Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sat1el2xp Structured version   Visualization version   GIF version

Theorem sat1el2xp 33341
Description: The first component of an element of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation is a member of a doubled Cartesian product. (Contributed by AV, 17-Sep-2023.)
Assertion
Ref Expression
sat1el2xp (𝑁 ∈ ω → ∀𝑤 ∈ ((∅ Sat ∅)‘𝑁)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)))
Distinct variable groups:   𝑤,𝑁   𝑎,𝑏,𝑤
Allowed substitution hints:   𝑁(𝑎,𝑏)

Proof of Theorem sat1el2xp
Dummy variables 𝑥 𝑓 𝑖 𝑗 𝑢 𝑣 𝑟 𝑠 𝑡 𝑦 𝑒 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . 3 (𝑥 = ∅ → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘∅))
21raleqdv 3348 . 2 (𝑥 = ∅ → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑥)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑤 ∈ ((∅ Sat ∅)‘∅)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
3 fveq2 6774 . . 3 (𝑥 = 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑦))
43raleqdv 3348 . 2 (𝑥 = 𝑦 → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑥)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
5 fveq2 6774 . . 3 (𝑥 = suc 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘suc 𝑦))
65raleqdv 3348 . 2 (𝑥 = suc 𝑦 → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑥)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑤 ∈ ((∅ Sat ∅)‘suc 𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
7 fveq2 6774 . . 3 (𝑥 = 𝑁 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑁))
87raleqdv 3348 . 2 (𝑥 = 𝑁 → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑥)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑁)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
9 eqeq1 2742 . . . . . . . 8 (𝑥 = (1st𝑤) → (𝑥 = (𝑖𝑔𝑗) ↔ (1st𝑤) = (𝑖𝑔𝑗)))
1092rexbidv 3229 . . . . . . 7 (𝑥 = (1st𝑤) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗)))
1110anbi2d 629 . . . . . 6 (𝑥 = (1st𝑤) → ((𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) ↔ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗))))
12 eqeq1 2742 . . . . . . 7 (𝑧 = (2nd𝑤) → (𝑧 = ∅ ↔ (2nd𝑤) = ∅))
1312anbi1d 630 . . . . . 6 (𝑧 = (2nd𝑤) → ((𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗)) ↔ ((2nd𝑤) = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗))))
1411, 13elopabi 7902 . . . . 5 (𝑤 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} → ((2nd𝑤) = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗)))
15 goel 33309 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
1615eqeq2d 2749 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((1st𝑤) = (𝑖𝑔𝑗) ↔ (1st𝑤) = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
17 omex 9401 . . . . . . . . . . 11 ω ∈ V
1817, 17pm3.2i 471 . . . . . . . . . 10 (ω ∈ V ∧ ω ∈ V)
19 peano1 7735 . . . . . . . . . . . 12 ∅ ∈ ω
2019a1i 11 . . . . . . . . . . 11 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ∅ ∈ ω)
21 opelxpi 5626 . . . . . . . . . . 11 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ⟨𝑖, 𝑗⟩ ∈ (ω × ω))
2220, 21opelxpd 5627 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (ω × ω)))
23 xpeq12 5614 . . . . . . . . . . . . 13 ((𝑎 = ω ∧ 𝑏 = ω) → (𝑎 × 𝑏) = (ω × ω))
2423xpeq2d 5619 . . . . . . . . . . . 12 ((𝑎 = ω ∧ 𝑏 = ω) → (ω × (𝑎 × 𝑏)) = (ω × (ω × ω)))
2524eleq2d 2824 . . . . . . . . . . 11 ((𝑎 = ω ∧ 𝑏 = ω) → (⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (𝑎 × 𝑏)) ↔ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (ω × ω))))
2625spc2egv 3538 . . . . . . . . . 10 ((ω ∈ V ∧ ω ∈ V) → (⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (ω × ω)) → ∃𝑎𝑏⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (𝑎 × 𝑏))))
2718, 22, 26mpsyl 68 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ∃𝑎𝑏⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (𝑎 × 𝑏)))
28 eleq1 2826 . . . . . . . . . 10 ((1st𝑤) = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → ((1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (𝑎 × 𝑏))))
29282exbidv 1927 . . . . . . . . 9 ((1st𝑤) = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎𝑏⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (𝑎 × 𝑏))))
3027, 29syl5ibrcom 246 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((1st𝑤) = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → ∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
3116, 30sylbid 239 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((1st𝑤) = (𝑖𝑔𝑗) → ∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
3231rexlimivv 3221 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗) → ∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)))
3332adantl 482 . . . . 5 (((2nd𝑤) = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗)) → ∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)))
3414, 33syl 17 . . . 4 (𝑤 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} → ∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)))
35 satf00 33336 . . . 4 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
3634, 35eleq2s 2857 . . 3 (𝑤 ∈ ((∅ Sat ∅)‘∅) → ∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)))
3736rgen 3074 . 2 𝑤 ∈ ((∅ Sat ∅)‘∅)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))
38 omsucelsucb 8289 . . . . . . . . . . 11 (𝑦 ∈ ω ↔ suc 𝑦 ∈ suc ω)
39 satf0sucom 33335 . . . . . . . . . . 11 (suc 𝑦 ∈ suc ω → ((∅ Sat ∅)‘suc 𝑦) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦))
4038, 39sylbi 216 . . . . . . . . . 10 (𝑦 ∈ ω → ((∅ Sat ∅)‘suc 𝑦) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦))
4140adantr 481 . . . . . . . . 9 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((∅ Sat ∅)‘suc 𝑦) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦))
42 nnon 7718 . . . . . . . . . . . 12 (𝑦 ∈ ω → 𝑦 ∈ On)
43 rdgsuc 8255 . . . . . . . . . . . 12 (𝑦 ∈ On → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦)))
4442, 43syl 17 . . . . . . . . . . 11 (𝑦 ∈ ω → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦)))
4544adantr 481 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦)))
46 elelsuc 6338 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → 𝑦 ∈ suc ω)
47 satf0sucom 33335 . . . . . . . . . . . . . 14 (𝑦 ∈ suc ω → ((∅ Sat ∅)‘𝑦) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦))
4846, 47syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ ω → ((∅ Sat ∅)‘𝑦) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦))
4948eqcomd 2744 . . . . . . . . . . . 12 (𝑦 ∈ ω → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦) = ((∅ Sat ∅)‘𝑦))
5049fveq2d 6778 . . . . . . . . . . 11 (𝑦 ∈ ω → ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦)) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘((∅ Sat ∅)‘𝑦)))
5150adantr 481 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦)) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘((∅ Sat ∅)‘𝑦)))
52 eqidd 2739 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})) = (𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
53 id 22 . . . . . . . . . . . . 13 (𝑓 = ((∅ Sat ∅)‘𝑦) → 𝑓 = ((∅ Sat ∅)‘𝑦))
54 rexeq 3343 . . . . . . . . . . . . . . . . 17 (𝑓 = ((∅ Sat ∅)‘𝑦) → (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))))
5554orbi1d 914 . . . . . . . . . . . . . . . 16 (𝑓 = ((∅ Sat ∅)‘𝑦) → ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
5655rexeqbi1dv 3341 . . . . . . . . . . . . . . 15 (𝑓 = ((∅ Sat ∅)‘𝑦) → (∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
5756anbi2d 629 . . . . . . . . . . . . . 14 (𝑓 = ((∅ Sat ∅)‘𝑦) → ((𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))
5857opabbidv 5140 . . . . . . . . . . . . 13 (𝑓 = ((∅ Sat ∅)‘𝑦) → {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} = {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})
5953, 58uneq12d 4098 . . . . . . . . . . . 12 (𝑓 = ((∅ Sat ∅)‘𝑦) → (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
6059adantl 482 . . . . . . . . . . 11 (((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) ∧ 𝑓 = ((∅ Sat ∅)‘𝑦)) → (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
61 fvexd 6789 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((∅ Sat ∅)‘𝑦) ∈ V)
6217a1i 11 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ω ∈ V)
63 satf0suclem 33337 . . . . . . . . . . . . 13 ((((∅ Sat ∅)‘𝑦) ∈ V ∧ ((∅ Sat ∅)‘𝑦) ∈ V ∧ ω ∈ V) → {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ∈ V)
6461, 61, 62, 63syl3anc 1370 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ∈ V)
65 unexg 7599 . . . . . . . . . . . 12 ((((∅ Sat ∅)‘𝑦) ∈ V ∧ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ∈ V) → (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ∈ V)
6661, 64, 65syl2anc 584 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ∈ V)
6752, 60, 61, 66fvmptd 6882 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘((∅ Sat ∅)‘𝑦)) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
6845, 51, 673eqtrd 2782 . . . . . . . . 9 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
6941, 68eqtrd 2778 . . . . . . . 8 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((∅ Sat ∅)‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
7069eleq2d 2824 . . . . . . 7 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ 𝑡 ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
71 elun 4083 . . . . . . 7 (𝑡 ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (𝑡 ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝑡 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
7270, 71bitrdi 287 . . . . . 6 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ (𝑡 ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝑡 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
73 fveq2 6774 . . . . . . . . . . 11 (𝑤 = 𝑡 → (1st𝑤) = (1st𝑡))
7473eleq1d 2823 . . . . . . . . . 10 (𝑤 = 𝑡 → ((1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ (1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
75742exbidv 1927 . . . . . . . . 9 (𝑤 = 𝑡 → (∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
7675rspccv 3558 . . . . . . . 8 (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑡 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
7776adantl 482 . . . . . . 7 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
78 fveq2 6774 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑣 → (1st𝑤) = (1st𝑣))
7978eleq1d 2823 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑣 → ((1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ (1st𝑣) ∈ (ω × (𝑎 × 𝑏))))
80792exbidv 1927 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑣 → (∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎𝑏(1st𝑣) ∈ (ω × (𝑎 × 𝑏))))
8180rspcva 3559 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ((∅ Sat ∅)‘𝑦) ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑣) ∈ (ω × (𝑎 × 𝑏)))
82 sels 5356 . . . . . . . . . . . . . . . . . 18 ((1st𝑣) ∈ (ω × (𝑎 × 𝑏)) → ∃𝑠(1st𝑣) ∈ 𝑠)
8382exlimivv 1935 . . . . . . . . . . . . . . . . 17 (∃𝑎𝑏(1st𝑣) ∈ (ω × (𝑎 × 𝑏)) → ∃𝑠(1st𝑣) ∈ 𝑠)
8481, 83syl 17 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ((∅ Sat ∅)‘𝑦) ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑠(1st𝑣) ∈ 𝑠)
8584expcom 414 . . . . . . . . . . . . . . 15 (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑣 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑠(1st𝑣) ∈ 𝑠))
86 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑢 → (1st𝑤) = (1st𝑢))
8786eleq1d 2823 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑢 → ((1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ (1st𝑢) ∈ (ω × (𝑎 × 𝑏))))
88872exbidv 1927 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑢 → (∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎𝑏(1st𝑢) ∈ (ω × (𝑎 × 𝑏))))
8988rspcva 3559 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ((∅ Sat ∅)‘𝑦) ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑢) ∈ (ω × (𝑎 × 𝑏)))
90 sels 5356 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑢) ∈ (ω × (𝑎 × 𝑏)) → ∃𝑠(1st𝑢) ∈ 𝑠)
9190exlimivv 1935 . . . . . . . . . . . . . . . . . . 19 (∃𝑎𝑏(1st𝑢) ∈ (ω × (𝑎 × 𝑏)) → ∃𝑠(1st𝑢) ∈ 𝑠)
9289, 91syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ((∅ Sat ∅)‘𝑦) ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑠(1st𝑢) ∈ 𝑠)
93 eleq2w 2822 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑟 → ((1st𝑢) ∈ 𝑠 ↔ (1st𝑢) ∈ 𝑟))
9493cbvexvw 2040 . . . . . . . . . . . . . . . . . . 19 (∃𝑠(1st𝑢) ∈ 𝑠 ↔ ∃𝑟(1st𝑢) ∈ 𝑟)
95 vex 3436 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑟 ∈ V
96 vex 3436 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑠 ∈ V
9795, 96pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 ∈ V ∧ 𝑠 ∈ V)
98 df-ov 7278 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((1st𝑢)⊼𝑔(1st𝑣)) = (⊼𝑔‘⟨(1st𝑢), (1st𝑣)⟩)
99 df-gona 33303 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑔 = (𝑒 ∈ (V × V) ↦ ⟨1o, 𝑒⟩)
100 opeq2 4805 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑒 = ⟨(1st𝑢), (1st𝑣)⟩ → ⟨1o, 𝑒⟩ = ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩)
101 opelvvg 5629 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ⟨(1st𝑢), (1st𝑣)⟩ ∈ (V × V))
102 opex 5379 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩ ∈ V
103102a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩ ∈ V)
10499, 100, 101, 103fvmptd3 6898 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → (⊼𝑔‘⟨(1st𝑢), (1st𝑣)⟩) = ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩)
10598, 104eqtrid 2790 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ((1st𝑢)⊼𝑔(1st𝑣)) = ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩)
106 1onn 8470 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1o ∈ ω
107106a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → 1o ∈ ω)
108 opelxpi 5626 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ⟨(1st𝑢), (1st𝑣)⟩ ∈ (𝑟 × 𝑠))
109107, 108opelxpd 5627 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩ ∈ (ω × (𝑟 × 𝑠)))
110105, 109eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑟 × 𝑠)))
111 xpeq12 5614 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 = 𝑟𝑏 = 𝑠) → (𝑎 × 𝑏) = (𝑟 × 𝑠))
112111xpeq2d 5619 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 = 𝑟𝑏 = 𝑠) → (ω × (𝑎 × 𝑏)) = (ω × (𝑟 × 𝑠)))
113112eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 = 𝑟𝑏 = 𝑠) → (((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑎 × 𝑏)) ↔ ((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑟 × 𝑠))))
114113spc2egv 3538 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟 ∈ V ∧ 𝑠 ∈ V) → (((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑟 × 𝑠)) → ∃𝑎𝑏((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑎 × 𝑏))))
11597, 110, 114mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ∃𝑎𝑏((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑎 × 𝑏)))
116 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → ((1st𝑡) ∈ (ω × (𝑎 × 𝑏)) ↔ ((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑎 × 𝑏))))
1171162exbidv 1927 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎𝑏((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑎 × 𝑏))))
118115, 117syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . . 23 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
119118ex 413 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑢) ∈ 𝑟 → ((1st𝑣) ∈ 𝑠 → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
120119exlimdv 1936 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑢) ∈ 𝑟 → (∃𝑠(1st𝑣) ∈ 𝑠 → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
121120com23 86 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑢) ∈ 𝑟 → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (∃𝑠(1st𝑣) ∈ 𝑠 → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
122121exlimiv 1933 . . . . . . . . . . . . . . . . . . 19 (∃𝑟(1st𝑢) ∈ 𝑟 → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (∃𝑠(1st𝑣) ∈ 𝑠 → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
12394, 122sylbi 216 . . . . . . . . . . . . . . . . . 18 (∃𝑠(1st𝑢) ∈ 𝑠 → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (∃𝑠(1st𝑣) ∈ 𝑠 → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
12492, 123syl 17 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ((∅ Sat ∅)‘𝑦) ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (∃𝑠(1st𝑣) ∈ 𝑠 → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
125124expcom 414 . . . . . . . . . . . . . . . 16 (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (∃𝑠(1st𝑣) ∈ 𝑠 → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
126125com24 95 . . . . . . . . . . . . . . 15 (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (∃𝑠(1st𝑣) ∈ 𝑠 → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
12785, 126syld 47 . . . . . . . . . . . . . 14 (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑣 ∈ ((∅ Sat ∅)‘𝑦) → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
128127adantl 482 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑣 ∈ ((∅ Sat ∅)‘𝑦) → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
129128com14 96 . . . . . . . . . . . 12 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → (𝑣 ∈ ((∅ Sat ∅)‘𝑦) → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
130129rexlimdv 3212 . . . . . . . . . . 11 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
13117, 96pm3.2i 471 . . . . . . . . . . . . . . . . . . . . 21 (ω ∈ V ∧ 𝑠 ∈ V)
132 df-goal 33304 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑔𝑖(1st𝑢) = ⟨2o, ⟨𝑖, (1st𝑢)⟩⟩
133 2onn 8472 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2o ∈ ω
134133a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω) → 2o ∈ ω)
135 opelxpi 5626 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 ∈ ω ∧ (1st𝑢) ∈ 𝑠) → ⟨𝑖, (1st𝑢)⟩ ∈ (ω × 𝑠))
136135ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω) → ⟨𝑖, (1st𝑢)⟩ ∈ (ω × 𝑠))
137134, 136opelxpd 5627 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω) → ⟨2o, ⟨𝑖, (1st𝑢)⟩⟩ ∈ (ω × (ω × 𝑠)))
138132, 137eqeltrid 2843 . . . . . . . . . . . . . . . . . . . . . . 23 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω) → ∀𝑔𝑖(1st𝑢) ∈ (ω × (ω × 𝑠)))
1391383adant3 1131 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω ∧ (1st𝑡) = ∀𝑔𝑖(1st𝑢)) → ∀𝑔𝑖(1st𝑢) ∈ (ω × (ω × 𝑠)))
140 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . 23 ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → ((1st𝑡) ∈ (ω × (ω × 𝑠)) ↔ ∀𝑔𝑖(1st𝑢) ∈ (ω × (ω × 𝑠))))
1411403ad2ant3 1134 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω ∧ (1st𝑡) = ∀𝑔𝑖(1st𝑢)) → ((1st𝑡) ∈ (ω × (ω × 𝑠)) ↔ ∀𝑔𝑖(1st𝑢) ∈ (ω × (ω × 𝑠))))
142139, 141mpbird 256 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω ∧ (1st𝑡) = ∀𝑔𝑖(1st𝑢)) → (1st𝑡) ∈ (ω × (ω × 𝑠)))
143 xpeq12 5614 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 = ω ∧ 𝑏 = 𝑠) → (𝑎 × 𝑏) = (ω × 𝑠))
144143xpeq2d 5619 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 = ω ∧ 𝑏 = 𝑠) → (ω × (𝑎 × 𝑏)) = (ω × (ω × 𝑠)))
145144eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 = ω ∧ 𝑏 = 𝑠) → ((1st𝑡) ∈ (ω × (𝑎 × 𝑏)) ↔ (1st𝑡) ∈ (ω × (ω × 𝑠))))
146145spc2egv 3538 . . . . . . . . . . . . . . . . . . . . 21 ((ω ∈ V ∧ 𝑠 ∈ V) → ((1st𝑡) ∈ (ω × (ω × 𝑠)) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
147131, 142, 146mpsyl 68 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω ∧ (1st𝑡) = ∀𝑔𝑖(1st𝑢)) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))
1481473exp 1118 . . . . . . . . . . . . . . . . . . 19 ((1st𝑢) ∈ 𝑠 → (𝑖 ∈ ω → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
149148com23 86 . . . . . . . . . . . . . . . . . 18 ((1st𝑢) ∈ 𝑠 → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → (𝑖 ∈ ω → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
150149a1d 25 . . . . . . . . . . . . . . . . 17 ((1st𝑢) ∈ 𝑠 → (𝑦 ∈ ω → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → (𝑖 ∈ ω → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
151150exlimiv 1933 . . . . . . . . . . . . . . . 16 (∃𝑠(1st𝑢) ∈ 𝑠 → (𝑦 ∈ ω → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → (𝑖 ∈ ω → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
15292, 151syl 17 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ((∅ Sat ∅)‘𝑦) ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑦 ∈ ω → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → (𝑖 ∈ ω → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
153152ex 413 . . . . . . . . . . . . . 14 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑦 ∈ ω → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → (𝑖 ∈ ω → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))))
154153impcomd 412 . . . . . . . . . . . . 13 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → (𝑖 ∈ ω → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
155154com24 95 . . . . . . . . . . . 12 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → (𝑖 ∈ ω → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
156155rexlimdv 3212 . . . . . . . . . . 11 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → (∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
157130, 156jaod 856 . . . . . . . . . 10 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ((∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢)) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
158157rexlimiv 3209 . . . . . . . . 9 (∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢)) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
159158adantl 482 . . . . . . . 8 (((2nd𝑡) = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢))) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
160 eqeq1 2742 . . . . . . . . . . . . 13 (𝑥 = (1st𝑡) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ (1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣))))
161160rexbidv 3226 . . . . . . . . . . . 12 (𝑥 = (1st𝑡) → (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣))))
162 eqeq1 2742 . . . . . . . . . . . . 13 (𝑥 = (1st𝑡) → (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ (1st𝑡) = ∀𝑔𝑖(1st𝑢)))
163162rexbidv 3226 . . . . . . . . . . . 12 (𝑥 = (1st𝑡) → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ↔ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢)))
164161, 163orbi12d 916 . . . . . . . . . . 11 (𝑥 = (1st𝑡) → ((∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢))))
165164rexbidv 3226 . . . . . . . . . 10 (𝑥 = (1st𝑡) → (∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢))))
166165anbi2d 629 . . . . . . . . 9 (𝑥 = (1st𝑡) → ((𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢)))))
167 eqeq1 2742 . . . . . . . . . 10 (𝑧 = (2nd𝑡) → (𝑧 = ∅ ↔ (2nd𝑡) = ∅))
168167anbi1d 630 . . . . . . . . 9 (𝑧 = (2nd𝑡) → ((𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢))) ↔ ((2nd𝑡) = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢)))))
169166, 168elopabi 7902 . . . . . . . 8 (𝑡 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} → ((2nd𝑡) = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢))))
170159, 169syl11 33 . . . . . . 7 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
17177, 170jaod 856 . . . . . 6 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((𝑡 ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝑡 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
17272, 171sylbid 239 . . . . 5 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ ((∅ Sat ∅)‘suc 𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
173172ex 413 . . . 4 (𝑦 ∈ ω → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑡 ∈ ((∅ Sat ∅)‘suc 𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
174173ralrimdv 3105 . . 3 (𝑦 ∈ ω → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → ∀𝑡 ∈ ((∅ Sat ∅)‘suc 𝑦)∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
17575cbvralvw 3383 . . 3 (∀𝑤 ∈ ((∅ Sat ∅)‘suc 𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑡 ∈ ((∅ Sat ∅)‘suc 𝑦)∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))
176174, 175syl6ibr 251 . 2 (𝑦 ∈ ω → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → ∀𝑤 ∈ ((∅ Sat ∅)‘suc 𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
1772, 4, 6, 8, 37, 176finds 7745 1 (𝑁 ∈ ω → ∀𝑤 ∈ ((∅ Sat ∅)‘𝑁)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cun 3885  c0 4256  cop 4567  {copab 5136  cmpt 5157   × cxp 5587  Oncon0 6266  suc csuc 6268  cfv 6433  (class class class)co 7275  ωcom 7712  1st c1st 7829  2nd c2nd 7830  reccrdg 8240  1oc1o 8290  2oc2o 8291  𝑔cgoe 33295  𝑔cgna 33296  𝑔cgol 33297   Sat csat 33298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-map 8617  df-goel 33302  df-gona 33303  df-goal 33304  df-sat 33305
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator