Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sat1el2xp Structured version   Visualization version   GIF version

Theorem sat1el2xp 34833
Description: The first component of an element of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation is a member of a doubled Cartesian product. (Contributed by AV, 17-Sep-2023.)
Assertion
Ref Expression
sat1el2xp (𝑁 ∈ ω → ∀𝑤 ∈ ((∅ Sat ∅)‘𝑁)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)))
Distinct variable groups:   𝑤,𝑁   𝑎,𝑏,𝑤
Allowed substitution hints:   𝑁(𝑎,𝑏)

Proof of Theorem sat1el2xp
Dummy variables 𝑥 𝑓 𝑖 𝑗 𝑢 𝑣 𝑟 𝑠 𝑡 𝑦 𝑒 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . 3 (𝑥 = ∅ → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘∅))
21raleqdv 3324 . 2 (𝑥 = ∅ → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑥)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑤 ∈ ((∅ Sat ∅)‘∅)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
3 fveq2 6891 . . 3 (𝑥 = 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑦))
43raleqdv 3324 . 2 (𝑥 = 𝑦 → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑥)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
5 fveq2 6891 . . 3 (𝑥 = suc 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘suc 𝑦))
65raleqdv 3324 . 2 (𝑥 = suc 𝑦 → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑥)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑤 ∈ ((∅ Sat ∅)‘suc 𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
7 fveq2 6891 . . 3 (𝑥 = 𝑁 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑁))
87raleqdv 3324 . 2 (𝑥 = 𝑁 → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑥)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑁)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
9 eqeq1 2735 . . . . . . . 8 (𝑥 = (1st𝑤) → (𝑥 = (𝑖𝑔𝑗) ↔ (1st𝑤) = (𝑖𝑔𝑗)))
1092rexbidv 3218 . . . . . . 7 (𝑥 = (1st𝑤) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗)))
1110anbi2d 628 . . . . . 6 (𝑥 = (1st𝑤) → ((𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) ↔ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗))))
12 eqeq1 2735 . . . . . . 7 (𝑧 = (2nd𝑤) → (𝑧 = ∅ ↔ (2nd𝑤) = ∅))
1312anbi1d 629 . . . . . 6 (𝑧 = (2nd𝑤) → ((𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗)) ↔ ((2nd𝑤) = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗))))
1411, 13elopabi 8052 . . . . 5 (𝑤 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} → ((2nd𝑤) = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗)))
15 goel 34801 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
1615eqeq2d 2742 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((1st𝑤) = (𝑖𝑔𝑗) ↔ (1st𝑤) = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
17 omex 9644 . . . . . . . . . . 11 ω ∈ V
1817, 17pm3.2i 470 . . . . . . . . . 10 (ω ∈ V ∧ ω ∈ V)
19 peano1 7883 . . . . . . . . . . . 12 ∅ ∈ ω
2019a1i 11 . . . . . . . . . . 11 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ∅ ∈ ω)
21 opelxpi 5713 . . . . . . . . . . 11 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ⟨𝑖, 𝑗⟩ ∈ (ω × ω))
2220, 21opelxpd 5715 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (ω × ω)))
23 xpeq12 5701 . . . . . . . . . . . . 13 ((𝑎 = ω ∧ 𝑏 = ω) → (𝑎 × 𝑏) = (ω × ω))
2423xpeq2d 5706 . . . . . . . . . . . 12 ((𝑎 = ω ∧ 𝑏 = ω) → (ω × (𝑎 × 𝑏)) = (ω × (ω × ω)))
2524eleq2d 2818 . . . . . . . . . . 11 ((𝑎 = ω ∧ 𝑏 = ω) → (⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (𝑎 × 𝑏)) ↔ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (ω × ω))))
2625spc2egv 3589 . . . . . . . . . 10 ((ω ∈ V ∧ ω ∈ V) → (⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (ω × ω)) → ∃𝑎𝑏⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (𝑎 × 𝑏))))
2718, 22, 26mpsyl 68 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ∃𝑎𝑏⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (𝑎 × 𝑏)))
28 eleq1 2820 . . . . . . . . . 10 ((1st𝑤) = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → ((1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (𝑎 × 𝑏))))
29282exbidv 1926 . . . . . . . . 9 ((1st𝑤) = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎𝑏⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (𝑎 × 𝑏))))
3027, 29syl5ibrcom 246 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((1st𝑤) = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → ∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
3116, 30sylbid 239 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((1st𝑤) = (𝑖𝑔𝑗) → ∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
3231rexlimivv 3198 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗) → ∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)))
3332adantl 481 . . . . 5 (((2nd𝑤) = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗)) → ∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)))
3414, 33syl 17 . . . 4 (𝑤 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} → ∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)))
35 satf00 34828 . . . 4 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
3634, 35eleq2s 2850 . . 3 (𝑤 ∈ ((∅ Sat ∅)‘∅) → ∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)))
3736rgen 3062 . 2 𝑤 ∈ ((∅ Sat ∅)‘∅)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))
38 omsucelsucb 8464 . . . . . . . . . . 11 (𝑦 ∈ ω ↔ suc 𝑦 ∈ suc ω)
39 satf0sucom 34827 . . . . . . . . . . 11 (suc 𝑦 ∈ suc ω → ((∅ Sat ∅)‘suc 𝑦) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦))
4038, 39sylbi 216 . . . . . . . . . 10 (𝑦 ∈ ω → ((∅ Sat ∅)‘suc 𝑦) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦))
4140adantr 480 . . . . . . . . 9 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((∅ Sat ∅)‘suc 𝑦) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦))
42 nnon 7865 . . . . . . . . . . . 12 (𝑦 ∈ ω → 𝑦 ∈ On)
43 rdgsuc 8430 . . . . . . . . . . . 12 (𝑦 ∈ On → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦)))
4442, 43syl 17 . . . . . . . . . . 11 (𝑦 ∈ ω → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦)))
4544adantr 480 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦)))
46 elelsuc 6437 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → 𝑦 ∈ suc ω)
47 satf0sucom 34827 . . . . . . . . . . . . . 14 (𝑦 ∈ suc ω → ((∅ Sat ∅)‘𝑦) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦))
4846, 47syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ ω → ((∅ Sat ∅)‘𝑦) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦))
4948eqcomd 2737 . . . . . . . . . . . 12 (𝑦 ∈ ω → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦) = ((∅ Sat ∅)‘𝑦))
5049fveq2d 6895 . . . . . . . . . . 11 (𝑦 ∈ ω → ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦)) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘((∅ Sat ∅)‘𝑦)))
5150adantr 480 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦)) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘((∅ Sat ∅)‘𝑦)))
52 eqidd 2732 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})) = (𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
53 id 22 . . . . . . . . . . . . 13 (𝑓 = ((∅ Sat ∅)‘𝑦) → 𝑓 = ((∅ Sat ∅)‘𝑦))
54 rexeq 3320 . . . . . . . . . . . . . . . . 17 (𝑓 = ((∅ Sat ∅)‘𝑦) → (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))))
5554orbi1d 914 . . . . . . . . . . . . . . . 16 (𝑓 = ((∅ Sat ∅)‘𝑦) → ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
5655rexeqbi1dv 3333 . . . . . . . . . . . . . . 15 (𝑓 = ((∅ Sat ∅)‘𝑦) → (∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
5756anbi2d 628 . . . . . . . . . . . . . 14 (𝑓 = ((∅ Sat ∅)‘𝑦) → ((𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))
5857opabbidv 5214 . . . . . . . . . . . . 13 (𝑓 = ((∅ Sat ∅)‘𝑦) → {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} = {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})
5953, 58uneq12d 4164 . . . . . . . . . . . 12 (𝑓 = ((∅ Sat ∅)‘𝑦) → (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
6059adantl 481 . . . . . . . . . . 11 (((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) ∧ 𝑓 = ((∅ Sat ∅)‘𝑦)) → (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
61 fvexd 6906 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((∅ Sat ∅)‘𝑦) ∈ V)
6217a1i 11 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ω ∈ V)
63 satf0suclem 34829 . . . . . . . . . . . . 13 ((((∅ Sat ∅)‘𝑦) ∈ V ∧ ((∅ Sat ∅)‘𝑦) ∈ V ∧ ω ∈ V) → {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ∈ V)
6461, 61, 62, 63syl3anc 1370 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ∈ V)
65 unexg 7740 . . . . . . . . . . . 12 ((((∅ Sat ∅)‘𝑦) ∈ V ∧ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ∈ V) → (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ∈ V)
6661, 64, 65syl2anc 583 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ∈ V)
6752, 60, 61, 66fvmptd 7005 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘((∅ Sat ∅)‘𝑦)) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
6845, 51, 673eqtrd 2775 . . . . . . . . 9 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
6941, 68eqtrd 2771 . . . . . . . 8 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((∅ Sat ∅)‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
7069eleq2d 2818 . . . . . . 7 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ 𝑡 ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
71 elun 4148 . . . . . . 7 (𝑡 ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (𝑡 ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝑡 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
7270, 71bitrdi 287 . . . . . 6 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ (𝑡 ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝑡 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
73 fveq2 6891 . . . . . . . . . . 11 (𝑤 = 𝑡 → (1st𝑤) = (1st𝑡))
7473eleq1d 2817 . . . . . . . . . 10 (𝑤 = 𝑡 → ((1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ (1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
75742exbidv 1926 . . . . . . . . 9 (𝑤 = 𝑡 → (∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
7675rspccv 3609 . . . . . . . 8 (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑡 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
7776adantl 481 . . . . . . 7 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
78 fveq2 6891 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑣 → (1st𝑤) = (1st𝑣))
7978eleq1d 2817 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑣 → ((1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ (1st𝑣) ∈ (ω × (𝑎 × 𝑏))))
80792exbidv 1926 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑣 → (∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎𝑏(1st𝑣) ∈ (ω × (𝑎 × 𝑏))))
8180rspcva 3610 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ((∅ Sat ∅)‘𝑦) ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑣) ∈ (ω × (𝑎 × 𝑏)))
82 sels 5438 . . . . . . . . . . . . . . . . . 18 ((1st𝑣) ∈ (ω × (𝑎 × 𝑏)) → ∃𝑠(1st𝑣) ∈ 𝑠)
8382exlimivv 1934 . . . . . . . . . . . . . . . . 17 (∃𝑎𝑏(1st𝑣) ∈ (ω × (𝑎 × 𝑏)) → ∃𝑠(1st𝑣) ∈ 𝑠)
8481, 83syl 17 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ((∅ Sat ∅)‘𝑦) ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑠(1st𝑣) ∈ 𝑠)
8584expcom 413 . . . . . . . . . . . . . . 15 (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑣 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑠(1st𝑣) ∈ 𝑠))
86 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑢 → (1st𝑤) = (1st𝑢))
8786eleq1d 2817 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑢 → ((1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ (1st𝑢) ∈ (ω × (𝑎 × 𝑏))))
88872exbidv 1926 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑢 → (∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎𝑏(1st𝑢) ∈ (ω × (𝑎 × 𝑏))))
8988rspcva 3610 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ((∅ Sat ∅)‘𝑦) ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑢) ∈ (ω × (𝑎 × 𝑏)))
90 sels 5438 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑢) ∈ (ω × (𝑎 × 𝑏)) → ∃𝑠(1st𝑢) ∈ 𝑠)
9190exlimivv 1934 . . . . . . . . . . . . . . . . . . 19 (∃𝑎𝑏(1st𝑢) ∈ (ω × (𝑎 × 𝑏)) → ∃𝑠(1st𝑢) ∈ 𝑠)
9289, 91syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ((∅ Sat ∅)‘𝑦) ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑠(1st𝑢) ∈ 𝑠)
93 eleq2w 2816 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑟 → ((1st𝑢) ∈ 𝑠 ↔ (1st𝑢) ∈ 𝑟))
9493cbvexvw 2039 . . . . . . . . . . . . . . . . . . 19 (∃𝑠(1st𝑢) ∈ 𝑠 ↔ ∃𝑟(1st𝑢) ∈ 𝑟)
95 vex 3477 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑟 ∈ V
96 vex 3477 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑠 ∈ V
9795, 96pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 ∈ V ∧ 𝑠 ∈ V)
98 df-ov 7415 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((1st𝑢)⊼𝑔(1st𝑣)) = (⊼𝑔‘⟨(1st𝑢), (1st𝑣)⟩)
99 df-gona 34795 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑔 = (𝑒 ∈ (V × V) ↦ ⟨1o, 𝑒⟩)
100 opeq2 4874 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑒 = ⟨(1st𝑢), (1st𝑣)⟩ → ⟨1o, 𝑒⟩ = ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩)
101 opelvvg 5717 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ⟨(1st𝑢), (1st𝑣)⟩ ∈ (V × V))
102 opex 5464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩ ∈ V
103102a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩ ∈ V)
10499, 100, 101, 103fvmptd3 7021 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → (⊼𝑔‘⟨(1st𝑢), (1st𝑣)⟩) = ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩)
10598, 104eqtrid 2783 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ((1st𝑢)⊼𝑔(1st𝑣)) = ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩)
106 1onn 8645 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1o ∈ ω
107106a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → 1o ∈ ω)
108 opelxpi 5713 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ⟨(1st𝑢), (1st𝑣)⟩ ∈ (𝑟 × 𝑠))
109107, 108opelxpd 5715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩ ∈ (ω × (𝑟 × 𝑠)))
110105, 109eqeltrd 2832 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑟 × 𝑠)))
111 xpeq12 5701 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 = 𝑟𝑏 = 𝑠) → (𝑎 × 𝑏) = (𝑟 × 𝑠))
112111xpeq2d 5706 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 = 𝑟𝑏 = 𝑠) → (ω × (𝑎 × 𝑏)) = (ω × (𝑟 × 𝑠)))
113112eleq2d 2818 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 = 𝑟𝑏 = 𝑠) → (((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑎 × 𝑏)) ↔ ((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑟 × 𝑠))))
114113spc2egv 3589 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟 ∈ V ∧ 𝑠 ∈ V) → (((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑟 × 𝑠)) → ∃𝑎𝑏((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑎 × 𝑏))))
11597, 110, 114mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ∃𝑎𝑏((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑎 × 𝑏)))
116 eleq1 2820 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → ((1st𝑡) ∈ (ω × (𝑎 × 𝑏)) ↔ ((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑎 × 𝑏))))
1171162exbidv 1926 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎𝑏((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑎 × 𝑏))))
118115, 117syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . . 23 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
119118ex 412 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑢) ∈ 𝑟 → ((1st𝑣) ∈ 𝑠 → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
120119exlimdv 1935 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑢) ∈ 𝑟 → (∃𝑠(1st𝑣) ∈ 𝑠 → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
121120com23 86 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑢) ∈ 𝑟 → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (∃𝑠(1st𝑣) ∈ 𝑠 → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
122121exlimiv 1932 . . . . . . . . . . . . . . . . . . 19 (∃𝑟(1st𝑢) ∈ 𝑟 → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (∃𝑠(1st𝑣) ∈ 𝑠 → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
12394, 122sylbi 216 . . . . . . . . . . . . . . . . . 18 (∃𝑠(1st𝑢) ∈ 𝑠 → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (∃𝑠(1st𝑣) ∈ 𝑠 → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
12492, 123syl 17 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ((∅ Sat ∅)‘𝑦) ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (∃𝑠(1st𝑣) ∈ 𝑠 → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
125124expcom 413 . . . . . . . . . . . . . . . 16 (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (∃𝑠(1st𝑣) ∈ 𝑠 → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
126125com24 95 . . . . . . . . . . . . . . 15 (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (∃𝑠(1st𝑣) ∈ 𝑠 → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
12785, 126syld 47 . . . . . . . . . . . . . 14 (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑣 ∈ ((∅ Sat ∅)‘𝑦) → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
128127adantl 481 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑣 ∈ ((∅ Sat ∅)‘𝑦) → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
129128com14 96 . . . . . . . . . . . 12 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → (𝑣 ∈ ((∅ Sat ∅)‘𝑦) → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
130129rexlimdv 3152 . . . . . . . . . . 11 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
13117, 96pm3.2i 470 . . . . . . . . . . . . . . . . . . . . 21 (ω ∈ V ∧ 𝑠 ∈ V)
132 df-goal 34796 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑔𝑖(1st𝑢) = ⟨2o, ⟨𝑖, (1st𝑢)⟩⟩
133 2onn 8647 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2o ∈ ω
134133a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω) → 2o ∈ ω)
135 opelxpi 5713 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 ∈ ω ∧ (1st𝑢) ∈ 𝑠) → ⟨𝑖, (1st𝑢)⟩ ∈ (ω × 𝑠))
136135ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω) → ⟨𝑖, (1st𝑢)⟩ ∈ (ω × 𝑠))
137134, 136opelxpd 5715 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω) → ⟨2o, ⟨𝑖, (1st𝑢)⟩⟩ ∈ (ω × (ω × 𝑠)))
138132, 137eqeltrid 2836 . . . . . . . . . . . . . . . . . . . . . . 23 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω) → ∀𝑔𝑖(1st𝑢) ∈ (ω × (ω × 𝑠)))
1391383adant3 1131 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω ∧ (1st𝑡) = ∀𝑔𝑖(1st𝑢)) → ∀𝑔𝑖(1st𝑢) ∈ (ω × (ω × 𝑠)))
140 eleq1 2820 . . . . . . . . . . . . . . . . . . . . . . 23 ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → ((1st𝑡) ∈ (ω × (ω × 𝑠)) ↔ ∀𝑔𝑖(1st𝑢) ∈ (ω × (ω × 𝑠))))
1411403ad2ant3 1134 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω ∧ (1st𝑡) = ∀𝑔𝑖(1st𝑢)) → ((1st𝑡) ∈ (ω × (ω × 𝑠)) ↔ ∀𝑔𝑖(1st𝑢) ∈ (ω × (ω × 𝑠))))
142139, 141mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω ∧ (1st𝑡) = ∀𝑔𝑖(1st𝑢)) → (1st𝑡) ∈ (ω × (ω × 𝑠)))
143 xpeq12 5701 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 = ω ∧ 𝑏 = 𝑠) → (𝑎 × 𝑏) = (ω × 𝑠))
144143xpeq2d 5706 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 = ω ∧ 𝑏 = 𝑠) → (ω × (𝑎 × 𝑏)) = (ω × (ω × 𝑠)))
145144eleq2d 2818 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 = ω ∧ 𝑏 = 𝑠) → ((1st𝑡) ∈ (ω × (𝑎 × 𝑏)) ↔ (1st𝑡) ∈ (ω × (ω × 𝑠))))
146145spc2egv 3589 . . . . . . . . . . . . . . . . . . . . 21 ((ω ∈ V ∧ 𝑠 ∈ V) → ((1st𝑡) ∈ (ω × (ω × 𝑠)) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
147131, 142, 146mpsyl 68 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω ∧ (1st𝑡) = ∀𝑔𝑖(1st𝑢)) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))
1481473exp 1118 . . . . . . . . . . . . . . . . . . 19 ((1st𝑢) ∈ 𝑠 → (𝑖 ∈ ω → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
149148com23 86 . . . . . . . . . . . . . . . . . 18 ((1st𝑢) ∈ 𝑠 → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → (𝑖 ∈ ω → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
150149a1d 25 . . . . . . . . . . . . . . . . 17 ((1st𝑢) ∈ 𝑠 → (𝑦 ∈ ω → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → (𝑖 ∈ ω → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
151150exlimiv 1932 . . . . . . . . . . . . . . . 16 (∃𝑠(1st𝑢) ∈ 𝑠 → (𝑦 ∈ ω → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → (𝑖 ∈ ω → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
15292, 151syl 17 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ((∅ Sat ∅)‘𝑦) ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑦 ∈ ω → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → (𝑖 ∈ ω → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
153152ex 412 . . . . . . . . . . . . . 14 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑦 ∈ ω → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → (𝑖 ∈ ω → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))))
154153impcomd 411 . . . . . . . . . . . . 13 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → (𝑖 ∈ ω → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
155154com24 95 . . . . . . . . . . . 12 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → (𝑖 ∈ ω → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
156155rexlimdv 3152 . . . . . . . . . . 11 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → (∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
157130, 156jaod 856 . . . . . . . . . 10 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ((∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢)) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
158157rexlimiv 3147 . . . . . . . . 9 (∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢)) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
159158adantl 481 . . . . . . . 8 (((2nd𝑡) = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢))) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
160 eqeq1 2735 . . . . . . . . . . . . 13 (𝑥 = (1st𝑡) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ (1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣))))
161160rexbidv 3177 . . . . . . . . . . . 12 (𝑥 = (1st𝑡) → (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣))))
162 eqeq1 2735 . . . . . . . . . . . . 13 (𝑥 = (1st𝑡) → (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ (1st𝑡) = ∀𝑔𝑖(1st𝑢)))
163162rexbidv 3177 . . . . . . . . . . . 12 (𝑥 = (1st𝑡) → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ↔ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢)))
164161, 163orbi12d 916 . . . . . . . . . . 11 (𝑥 = (1st𝑡) → ((∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢))))
165164rexbidv 3177 . . . . . . . . . 10 (𝑥 = (1st𝑡) → (∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢))))
166165anbi2d 628 . . . . . . . . 9 (𝑥 = (1st𝑡) → ((𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢)))))
167 eqeq1 2735 . . . . . . . . . 10 (𝑧 = (2nd𝑡) → (𝑧 = ∅ ↔ (2nd𝑡) = ∅))
168167anbi1d 629 . . . . . . . . 9 (𝑧 = (2nd𝑡) → ((𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢))) ↔ ((2nd𝑡) = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢)))))
169166, 168elopabi 8052 . . . . . . . 8 (𝑡 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} → ((2nd𝑡) = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢))))
170159, 169syl11 33 . . . . . . 7 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
17177, 170jaod 856 . . . . . 6 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((𝑡 ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝑡 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
17272, 171sylbid 239 . . . . 5 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ ((∅ Sat ∅)‘suc 𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
173172ex 412 . . . 4 (𝑦 ∈ ω → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑡 ∈ ((∅ Sat ∅)‘suc 𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
174173ralrimdv 3151 . . 3 (𝑦 ∈ ω → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → ∀𝑡 ∈ ((∅ Sat ∅)‘suc 𝑦)∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
17575cbvralvw 3233 . . 3 (∀𝑤 ∈ ((∅ Sat ∅)‘suc 𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑡 ∈ ((∅ Sat ∅)‘suc 𝑦)∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))
176174, 175imbitrrdi 251 . 2 (𝑦 ∈ ω → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → ∀𝑤 ∈ ((∅ Sat ∅)‘suc 𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
1772, 4, 6, 8, 37, 176finds 7893 1 (𝑁 ∈ ω → ∀𝑤 ∈ ((∅ Sat ∅)‘𝑁)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  w3a 1086   = wceq 1540  wex 1780  wcel 2105  wral 3060  wrex 3069  Vcvv 3473  cun 3946  c0 4322  cop 4634  {copab 5210  cmpt 5231   × cxp 5674  Oncon0 6364  suc csuc 6366  cfv 6543  (class class class)co 7412  ωcom 7859  1st c1st 7977  2nd c2nd 7978  reccrdg 8415  1oc1o 8465  2oc2o 8466  𝑔cgoe 34787  𝑔cgna 34788  𝑔cgol 34789   Sat csat 34790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-map 8828  df-goel 34794  df-gona 34795  df-goal 34796  df-sat 34797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator