Step | Hyp | Ref
| Expression |
1 | | fveq2 6774 |
. . 3
⊢ (𝑥 = ∅ → ((∅ Sat
∅)‘𝑥) =
((∅ Sat ∅)‘∅)) |
2 | 1 | raleqdv 3348 |
. 2
⊢ (𝑥 = ∅ → (∀𝑤 ∈ ((∅ Sat
∅)‘𝑥)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑤 ∈ ((∅ Sat
∅)‘∅)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)))) |
3 | | fveq2 6774 |
. . 3
⊢ (𝑥 = 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat
∅)‘𝑦)) |
4 | 3 | raleqdv 3348 |
. 2
⊢ (𝑥 = 𝑦 → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑥)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)))) |
5 | | fveq2 6774 |
. . 3
⊢ (𝑥 = suc 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat
∅)‘suc 𝑦)) |
6 | 5 | raleqdv 3348 |
. 2
⊢ (𝑥 = suc 𝑦 → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑥)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑤 ∈ ((∅ Sat ∅)‘suc
𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)))) |
7 | | fveq2 6774 |
. . 3
⊢ (𝑥 = 𝑁 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat
∅)‘𝑁)) |
8 | 7 | raleqdv 3348 |
. 2
⊢ (𝑥 = 𝑁 → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑥)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑁)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)))) |
9 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑥 = (1st ‘𝑤) → (𝑥 = (𝑖∈𝑔𝑗) ↔ (1st ‘𝑤) = (𝑖∈𝑔𝑗))) |
10 | 9 | 2rexbidv 3229 |
. . . . . . 7
⊢ (𝑥 = (1st ‘𝑤) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st ‘𝑤) = (𝑖∈𝑔𝑗))) |
11 | 10 | anbi2d 629 |
. . . . . 6
⊢ (𝑥 = (1st ‘𝑤) → ((𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)) ↔ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st ‘𝑤) = (𝑖∈𝑔𝑗)))) |
12 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑧 = (2nd ‘𝑤) → (𝑧 = ∅ ↔ (2nd
‘𝑤) =
∅)) |
13 | 12 | anbi1d 630 |
. . . . . 6
⊢ (𝑧 = (2nd ‘𝑤) → ((𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st ‘𝑤) = (𝑖∈𝑔𝑗)) ↔ ((2nd ‘𝑤) = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st
‘𝑤) = (𝑖∈𝑔𝑗)))) |
14 | 11, 13 | elopabi 7902 |
. . . . 5
⊢ (𝑤 ∈ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} → ((2nd ‘𝑤) = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st
‘𝑤) = (𝑖∈𝑔𝑗))) |
15 | | goel 33309 |
. . . . . . . . 9
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖∈𝑔𝑗) = 〈∅, 〈𝑖, 𝑗〉〉) |
16 | 15 | eqeq2d 2749 |
. . . . . . . 8
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) →
((1st ‘𝑤)
= (𝑖∈𝑔𝑗) ↔ (1st ‘𝑤) = 〈∅, 〈𝑖, 𝑗〉〉)) |
17 | | omex 9401 |
. . . . . . . . . . 11
⊢ ω
∈ V |
18 | 17, 17 | pm3.2i 471 |
. . . . . . . . . 10
⊢ (ω
∈ V ∧ ω ∈ V) |
19 | | peano1 7735 |
. . . . . . . . . . . 12
⊢ ∅
∈ ω |
20 | 19 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ∅
∈ ω) |
21 | | opelxpi 5626 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) →
〈𝑖, 𝑗〉 ∈ (ω ×
ω)) |
22 | 20, 21 | opelxpd 5627 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) →
〈∅, 〈𝑖,
𝑗〉〉 ∈
(ω × (ω × ω))) |
23 | | xpeq12 5614 |
. . . . . . . . . . . . 13
⊢ ((𝑎 = ω ∧ 𝑏 = ω) → (𝑎 × 𝑏) = (ω ×
ω)) |
24 | 23 | xpeq2d 5619 |
. . . . . . . . . . . 12
⊢ ((𝑎 = ω ∧ 𝑏 = ω) → (ω
× (𝑎 × 𝑏)) = (ω × (ω
× ω))) |
25 | 24 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ ((𝑎 = ω ∧ 𝑏 = ω) →
(〈∅, 〈𝑖,
𝑗〉〉 ∈
(ω × (𝑎 ×
𝑏)) ↔ 〈∅,
〈𝑖, 𝑗〉〉 ∈ (ω × (ω
× ω)))) |
26 | 25 | spc2egv 3538 |
. . . . . . . . . 10
⊢ ((ω
∈ V ∧ ω ∈ V) → (〈∅, 〈𝑖, 𝑗〉〉 ∈ (ω × (ω
× ω)) → ∃𝑎∃𝑏〈∅, 〈𝑖, 𝑗〉〉 ∈ (ω × (𝑎 × 𝑏)))) |
27 | 18, 22, 26 | mpsyl 68 |
. . . . . . . . 9
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) →
∃𝑎∃𝑏〈∅, 〈𝑖, 𝑗〉〉 ∈ (ω × (𝑎 × 𝑏))) |
28 | | eleq1 2826 |
. . . . . . . . . 10
⊢
((1st ‘𝑤) = 〈∅, 〈𝑖, 𝑗〉〉 → ((1st
‘𝑤) ∈ (ω
× (𝑎 × 𝑏)) ↔ 〈∅,
〈𝑖, 𝑗〉〉 ∈ (ω × (𝑎 × 𝑏)))) |
29 | 28 | 2exbidv 1927 |
. . . . . . . . 9
⊢
((1st ‘𝑤) = 〈∅, 〈𝑖, 𝑗〉〉 → (∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎∃𝑏〈∅, 〈𝑖, 𝑗〉〉 ∈ (ω × (𝑎 × 𝑏)))) |
30 | 27, 29 | syl5ibrcom 246 |
. . . . . . . 8
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) →
((1st ‘𝑤)
= 〈∅, 〈𝑖,
𝑗〉〉 →
∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)))) |
31 | 16, 30 | sylbid 239 |
. . . . . . 7
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) →
((1st ‘𝑤)
= (𝑖∈𝑔𝑗) → ∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)))) |
32 | 31 | rexlimivv 3221 |
. . . . . 6
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω (1st ‘𝑤) = (𝑖∈𝑔𝑗) → ∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) |
33 | 32 | adantl 482 |
. . . . 5
⊢
(((2nd ‘𝑤) = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st ‘𝑤) = (𝑖∈𝑔𝑗)) → ∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) |
34 | 14, 33 | syl 17 |
. . . 4
⊢ (𝑤 ∈ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} → ∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) |
35 | | satf00 33336 |
. . . 4
⊢ ((∅
Sat ∅)‘∅) = {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} |
36 | 34, 35 | eleq2s 2857 |
. . 3
⊢ (𝑤 ∈ ((∅ Sat
∅)‘∅) → ∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) |
37 | 36 | rgen 3074 |
. 2
⊢
∀𝑤 ∈
((∅ Sat ∅)‘∅)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) |
38 | | omsucelsucb 8289 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ω ↔ suc 𝑦 ∈ suc
ω) |
39 | | satf0sucom 33335 |
. . . . . . . . . . 11
⊢ (suc
𝑦 ∈ suc ω →
((∅ Sat ∅)‘suc 𝑦) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘suc 𝑦)) |
40 | 38, 39 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ω → ((∅
Sat ∅)‘suc 𝑦) =
(rec((𝑓 ∈ V ↦
(𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘suc 𝑦)) |
41 | 40 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((∅ Sat ∅)‘suc
𝑦) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘suc 𝑦)) |
42 | | nnon 7718 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ω → 𝑦 ∈ On) |
43 | | rdgsuc 8255 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ On → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘suc 𝑦) = ((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑦))) |
44 | 42, 43 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ω →
(rec((𝑓 ∈ V ↦
(𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘suc 𝑦) = ((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑦))) |
45 | 44 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘suc 𝑦) = ((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑦))) |
46 | | elelsuc 6338 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ω → 𝑦 ∈ suc
ω) |
47 | | satf0sucom 33335 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ suc ω →
((∅ Sat ∅)‘𝑦) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑦)) |
48 | 46, 47 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ω → ((∅
Sat ∅)‘𝑦) =
(rec((𝑓 ∈ V ↦
(𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑦)) |
49 | 48 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ω →
(rec((𝑓 ∈ V ↦
(𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑦) = ((∅ Sat ∅)‘𝑦)) |
50 | 49 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ω → ((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑦)) = ((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))‘((∅ Sat
∅)‘𝑦))) |
51 | 50 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑦)) = ((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))‘((∅ Sat
∅)‘𝑦))) |
52 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})) = (𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))) |
53 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑓 = ((∅ Sat
∅)‘𝑦) →
𝑓 = ((∅ Sat
∅)‘𝑦)) |
54 | | rexeq 3343 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = ((∅ Sat
∅)‘𝑦) →
(∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ↔
∃𝑣 ∈ ((∅
Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)))) |
55 | 54 | orbi1d 914 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = ((∅ Sat
∅)‘𝑦) →
((∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) ↔ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))) |
56 | 55 | rexeqbi1dv 3341 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = ((∅ Sat
∅)‘𝑦) →
(∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))) |
57 | 56 | anbi2d 629 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = ((∅ Sat
∅)‘𝑦) →
((𝑧 = ∅ ∧
∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢))) ↔ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢))))) |
58 | 57 | opabbidv 5140 |
. . . . . . . . . . . . 13
⊢ (𝑓 = ((∅ Sat
∅)‘𝑦) →
{〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))} = {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}) |
59 | 53, 58 | uneq12d 4098 |
. . . . . . . . . . . 12
⊢ (𝑓 = ((∅ Sat
∅)‘𝑦) →
(𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}) = (((∅ Sat ∅)‘𝑦) ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})) |
60 | 59 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) ∧ 𝑓 = ((∅ Sat ∅)‘𝑦)) → (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}) = (((∅ Sat ∅)‘𝑦) ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})) |
61 | | fvexd 6789 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((∅ Sat ∅)‘𝑦) ∈ V) |
62 | 17 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ω ∈ V) |
63 | | satf0suclem 33337 |
. . . . . . . . . . . . 13
⊢
((((∅ Sat ∅)‘𝑦) ∈ V ∧ ((∅ Sat
∅)‘𝑦) ∈ V
∧ ω ∈ V) → {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))} ∈ V) |
64 | 61, 61, 62, 63 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))} ∈ V) |
65 | | unexg 7599 |
. . . . . . . . . . . 12
⊢
((((∅ Sat ∅)‘𝑦) ∈ V ∧ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))} ∈ V) → (((∅ Sat
∅)‘𝑦) ∪
{〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat
∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}) ∈ V) |
66 | 61, 64, 65 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → (((∅ Sat
∅)‘𝑦) ∪
{〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat
∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}) ∈ V) |
67 | 52, 60, 61, 66 | fvmptd 6882 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))‘((∅ Sat
∅)‘𝑦)) =
(((∅ Sat ∅)‘𝑦) ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})) |
68 | 45, 51, 67 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})) |
69 | 41, 68 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((∅ Sat ∅)‘suc
𝑦) = (((∅ Sat
∅)‘𝑦) ∪
{〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat
∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})) |
70 | 69 | eleq2d 2824 |
. . . . . . 7
⊢ ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ ((∅ Sat ∅)‘suc
𝑦) ↔ 𝑡 ∈ (((∅ Sat
∅)‘𝑦) ∪
{〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat
∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))) |
71 | | elun 4083 |
. . . . . . 7
⊢ (𝑡 ∈ (((∅ Sat
∅)‘𝑦) ∪
{〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat
∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}) ↔ (𝑡 ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝑡 ∈ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))})) |
72 | 70, 71 | bitrdi 287 |
. . . . . 6
⊢ ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ ((∅ Sat ∅)‘suc
𝑦) ↔ (𝑡 ∈ ((∅ Sat
∅)‘𝑦) ∨
𝑡 ∈ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}))) |
73 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑡 → (1st ‘𝑤) = (1st ‘𝑡)) |
74 | 73 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑡 → ((1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ (1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))) |
75 | 74 | 2exbidv 1927 |
. . . . . . . . 9
⊢ (𝑤 = 𝑡 → (∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))) |
76 | 75 | rspccv 3558 |
. . . . . . . 8
⊢
(∀𝑤 ∈
((∅ Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑡 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))) |
77 | 76 | adantl 482 |
. . . . . . 7
⊢ ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))) |
78 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑣 → (1st ‘𝑤) = (1st ‘𝑣)) |
79 | 78 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑣 → ((1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ (1st ‘𝑣) ∈ (ω × (𝑎 × 𝑏)))) |
80 | 79 | 2exbidv 1927 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑣 → (∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎∃𝑏(1st ‘𝑣) ∈ (ω × (𝑎 × 𝑏)))) |
81 | 80 | rspcva 3559 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 ∈ ((∅ Sat
∅)‘𝑦) ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎∃𝑏(1st ‘𝑣) ∈ (ω × (𝑎 × 𝑏))) |
82 | | sels 5356 |
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘𝑣) ∈ (ω × (𝑎 × 𝑏)) → ∃𝑠(1st ‘𝑣) ∈ 𝑠) |
83 | 82 | exlimivv 1935 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑎∃𝑏(1st ‘𝑣) ∈ (ω × (𝑎 × 𝑏)) → ∃𝑠(1st ‘𝑣) ∈ 𝑠) |
84 | 81, 83 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 ∈ ((∅ Sat
∅)‘𝑦) ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑠(1st ‘𝑣) ∈ 𝑠) |
85 | 84 | expcom 414 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑤 ∈
((∅ Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑣 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑠(1st ‘𝑣) ∈ 𝑠)) |
86 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = 𝑢 → (1st ‘𝑤) = (1st ‘𝑢)) |
87 | 86 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑢 → ((1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ (1st ‘𝑢) ∈ (ω × (𝑎 × 𝑏)))) |
88 | 87 | 2exbidv 1927 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑢 → (∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎∃𝑏(1st ‘𝑢) ∈ (ω × (𝑎 × 𝑏)))) |
89 | 88 | rspcva 3559 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ∈ ((∅ Sat
∅)‘𝑦) ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎∃𝑏(1st ‘𝑢) ∈ (ω × (𝑎 × 𝑏))) |
90 | | sels 5356 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘𝑢) ∈ (ω × (𝑎 × 𝑏)) → ∃𝑠(1st ‘𝑢) ∈ 𝑠) |
91 | 90 | exlimivv 1935 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑎∃𝑏(1st ‘𝑢) ∈ (ω × (𝑎 × 𝑏)) → ∃𝑠(1st ‘𝑢) ∈ 𝑠) |
92 | 89, 91 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ ((∅ Sat
∅)‘𝑦) ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑠(1st ‘𝑢) ∈ 𝑠) |
93 | | eleq2w 2822 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = 𝑟 → ((1st ‘𝑢) ∈ 𝑠 ↔ (1st ‘𝑢) ∈ 𝑟)) |
94 | 93 | cbvexvw 2040 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑠(1st ‘𝑢) ∈ 𝑠 ↔ ∃𝑟(1st ‘𝑢) ∈ 𝑟) |
95 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝑟 ∈ V |
96 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝑠 ∈ V |
97 | 95, 96 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑟 ∈ V ∧ 𝑠 ∈ V) |
98 | | df-ov 7278 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) =
(⊼𝑔‘〈(1st ‘𝑢), (1st ‘𝑣)〉) |
99 | | df-gona 33303 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
⊼𝑔 = (𝑒 ∈ (V × V) ↦
〈1o, 𝑒〉) |
100 | | opeq2 4805 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑒 = 〈(1st
‘𝑢), (1st
‘𝑣)〉 →
〈1o, 𝑒〉 = 〈1o,
〈(1st ‘𝑢), (1st ‘𝑣)〉〉) |
101 | | opelvvg 5629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((1st ‘𝑢) ∈ 𝑟 ∧ (1st ‘𝑣) ∈ 𝑠) → 〈(1st ‘𝑢), (1st ‘𝑣)〉 ∈ (V ×
V)) |
102 | | opex 5379 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
〈1o, 〈(1st ‘𝑢), (1st ‘𝑣)〉〉 ∈ V |
103 | 102 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((1st ‘𝑢) ∈ 𝑟 ∧ (1st ‘𝑣) ∈ 𝑠) → 〈1o,
〈(1st ‘𝑢), (1st ‘𝑣)〉〉 ∈ V) |
104 | 99, 100, 101, 103 | fvmptd3 6898 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((1st ‘𝑢) ∈ 𝑟 ∧ (1st ‘𝑣) ∈ 𝑠) →
(⊼𝑔‘〈(1st ‘𝑢), (1st ‘𝑣)〉) = 〈1o,
〈(1st ‘𝑢), (1st ‘𝑣)〉〉) |
105 | 98, 104 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((1st ‘𝑢) ∈ 𝑟 ∧ (1st ‘𝑣) ∈ 𝑠) → ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) =
〈1o, 〈(1st ‘𝑢), (1st ‘𝑣)〉〉) |
106 | | 1onn 8470 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
1o ∈ ω |
107 | 106 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((1st ‘𝑢) ∈ 𝑟 ∧ (1st ‘𝑣) ∈ 𝑠) → 1o ∈
ω) |
108 | | opelxpi 5626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((1st ‘𝑢) ∈ 𝑟 ∧ (1st ‘𝑣) ∈ 𝑠) → 〈(1st ‘𝑢), (1st ‘𝑣)〉 ∈ (𝑟 × 𝑠)) |
109 | 107, 108 | opelxpd 5627 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((1st ‘𝑢) ∈ 𝑟 ∧ (1st ‘𝑣) ∈ 𝑠) → 〈1o,
〈(1st ‘𝑢), (1st ‘𝑣)〉〉 ∈ (ω × (𝑟 × 𝑠))) |
110 | 105, 109 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((1st ‘𝑢) ∈ 𝑟 ∧ (1st ‘𝑣) ∈ 𝑠) → ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∈ (ω
× (𝑟 × 𝑠))) |
111 | | xpeq12 5614 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎 = 𝑟 ∧ 𝑏 = 𝑠) → (𝑎 × 𝑏) = (𝑟 × 𝑠)) |
112 | 111 | xpeq2d 5619 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 = 𝑟 ∧ 𝑏 = 𝑠) → (ω × (𝑎 × 𝑏)) = (ω × (𝑟 × 𝑠))) |
113 | 112 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎 = 𝑟 ∧ 𝑏 = 𝑠) → (((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∈ (ω
× (𝑎 × 𝑏)) ↔ ((1st
‘𝑢)⊼𝑔(1st
‘𝑣)) ∈ (ω
× (𝑟 × 𝑠)))) |
114 | 113 | spc2egv 3538 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑟 ∈ V ∧ 𝑠 ∈ V) →
(((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∈ (ω
× (𝑟 × 𝑠)) → ∃𝑎∃𝑏((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∈ (ω
× (𝑎 × 𝑏)))) |
115 | 97, 110, 114 | mpsyl 68 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((1st ‘𝑢) ∈ 𝑟 ∧ (1st ‘𝑣) ∈ 𝑠) → ∃𝑎∃𝑏((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∈ (ω
× (𝑎 × 𝑏))) |
116 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((1st ‘𝑡) = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) →
((1st ‘𝑡)
∈ (ω × (𝑎
× 𝑏)) ↔
((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∈ (ω
× (𝑎 × 𝑏)))) |
117 | 116 | 2exbidv 1927 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((1st ‘𝑡) = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) →
(∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎∃𝑏((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∈ (ω
× (𝑎 × 𝑏)))) |
118 | 115, 117 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((1st ‘𝑢) ∈ 𝑟 ∧ (1st ‘𝑣) ∈ 𝑠) → ((1st ‘𝑡) = ((1st
‘𝑢)⊼𝑔(1st
‘𝑣)) →
∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))) |
119 | 118 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((1st ‘𝑢) ∈ 𝑟 → ((1st ‘𝑣) ∈ 𝑠 → ((1st ‘𝑡) = ((1st
‘𝑢)⊼𝑔(1st
‘𝑣)) →
∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏))))) |
120 | 119 | exlimdv 1936 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((1st ‘𝑢) ∈ 𝑟 → (∃𝑠(1st ‘𝑣) ∈ 𝑠 → ((1st ‘𝑡) = ((1st
‘𝑢)⊼𝑔(1st
‘𝑣)) →
∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏))))) |
121 | 120 | com23 86 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘𝑢) ∈ 𝑟 → ((1st ‘𝑡) = ((1st
‘𝑢)⊼𝑔(1st
‘𝑣)) →
(∃𝑠(1st
‘𝑣) ∈ 𝑠 → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏))))) |
122 | 121 | exlimiv 1933 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑟(1st ‘𝑢) ∈ 𝑟 → ((1st ‘𝑡) = ((1st
‘𝑢)⊼𝑔(1st
‘𝑣)) →
(∃𝑠(1st
‘𝑣) ∈ 𝑠 → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏))))) |
123 | 94, 122 | sylbi 216 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑠(1st ‘𝑢) ∈ 𝑠 → ((1st ‘𝑡) = ((1st
‘𝑢)⊼𝑔(1st
‘𝑣)) →
(∃𝑠(1st
‘𝑣) ∈ 𝑠 → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏))))) |
124 | 92, 123 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ ((∅ Sat
∅)‘𝑦) ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((1st ‘𝑡) = ((1st
‘𝑢)⊼𝑔(1st
‘𝑣)) →
(∃𝑠(1st
‘𝑣) ∈ 𝑠 → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏))))) |
125 | 124 | expcom 414 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑤 ∈
((∅ Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ((1st
‘𝑡) =
((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) →
(∃𝑠(1st
‘𝑣) ∈ 𝑠 → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))))) |
126 | 125 | com24 95 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑤 ∈
((∅ Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) → (∃𝑠(1st ‘𝑣) ∈ 𝑠 → ((1st ‘𝑡) = ((1st
‘𝑢)⊼𝑔(1st
‘𝑣)) → (𝑢 ∈ ((∅ Sat
∅)‘𝑦) →
∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))))) |
127 | 85, 126 | syld 47 |
. . . . . . . . . . . . . 14
⊢
(∀𝑤 ∈
((∅ Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑣 ∈ ((∅ Sat ∅)‘𝑦) → ((1st
‘𝑡) =
((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) → (𝑢 ∈ ((∅ Sat
∅)‘𝑦) →
∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))))) |
128 | 127 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑣 ∈ ((∅ Sat ∅)‘𝑦) → ((1st
‘𝑡) =
((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) → (𝑢 ∈ ((∅ Sat
∅)‘𝑦) →
∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))))) |
129 | 128 | com14 96 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ ((∅ Sat
∅)‘𝑦) →
(𝑣 ∈ ((∅ Sat
∅)‘𝑦) →
((1st ‘𝑡)
= ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) → ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))))) |
130 | 129 | rexlimdv 3212 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ ((∅ Sat
∅)‘𝑦) →
(∃𝑣 ∈ ((∅
Sat ∅)‘𝑦)(1st ‘𝑡) = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) → ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏))))) |
131 | 17, 96 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ω
∈ V ∧ 𝑠 ∈
V) |
132 | | df-goal 33304 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
∀𝑔𝑖(1st ‘𝑢) = 〈2o, 〈𝑖, (1st ‘𝑢)〉〉 |
133 | | 2onn 8472 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
2o ∈ ω |
134 | 133 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((1st ‘𝑢) ∈ 𝑠 ∧ 𝑖 ∈ ω) → 2o ∈
ω) |
135 | | opelxpi 5626 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ ω ∧
(1st ‘𝑢)
∈ 𝑠) →
〈𝑖, (1st
‘𝑢)〉 ∈
(ω × 𝑠)) |
136 | 135 | ancoms 459 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((1st ‘𝑢) ∈ 𝑠 ∧ 𝑖 ∈ ω) → 〈𝑖, (1st ‘𝑢)〉 ∈ (ω ×
𝑠)) |
137 | 134, 136 | opelxpd 5627 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((1st ‘𝑢) ∈ 𝑠 ∧ 𝑖 ∈ ω) → 〈2o,
〈𝑖, (1st
‘𝑢)〉〉
∈ (ω × (ω × 𝑠))) |
138 | 132, 137 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((1st ‘𝑢) ∈ 𝑠 ∧ 𝑖 ∈ ω) →
∀𝑔𝑖(1st ‘𝑢) ∈ (ω × (ω ×
𝑠))) |
139 | 138 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((1st ‘𝑢) ∈ 𝑠 ∧ 𝑖 ∈ ω ∧ (1st
‘𝑡) =
∀𝑔𝑖(1st ‘𝑢)) → ∀𝑔𝑖(1st ‘𝑢) ∈ (ω ×
(ω × 𝑠))) |
140 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((1st ‘𝑡) = ∀𝑔𝑖(1st ‘𝑢) → ((1st
‘𝑡) ∈ (ω
× (ω × 𝑠)) ↔ ∀𝑔𝑖(1st ‘𝑢) ∈ (ω ×
(ω × 𝑠)))) |
141 | 140 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((1st ‘𝑢) ∈ 𝑠 ∧ 𝑖 ∈ ω ∧ (1st
‘𝑡) =
∀𝑔𝑖(1st ‘𝑢)) → ((1st ‘𝑡) ∈ (ω ×
(ω × 𝑠)) ↔
∀𝑔𝑖(1st ‘𝑢) ∈ (ω × (ω ×
𝑠)))) |
142 | 139, 141 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((1st ‘𝑢) ∈ 𝑠 ∧ 𝑖 ∈ ω ∧ (1st
‘𝑡) =
∀𝑔𝑖(1st ‘𝑢)) → (1st ‘𝑡) ∈ (ω ×
(ω × 𝑠))) |
143 | | xpeq12 5614 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑎 = ω ∧ 𝑏 = 𝑠) → (𝑎 × 𝑏) = (ω × 𝑠)) |
144 | 143 | xpeq2d 5619 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑎 = ω ∧ 𝑏 = 𝑠) → (ω × (𝑎 × 𝑏)) = (ω × (ω × 𝑠))) |
145 | 144 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 = ω ∧ 𝑏 = 𝑠) → ((1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)) ↔ (1st ‘𝑡) ∈ (ω ×
(ω × 𝑠)))) |
146 | 145 | spc2egv 3538 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ω
∈ V ∧ 𝑠 ∈ V)
→ ((1st ‘𝑡) ∈ (ω × (ω ×
𝑠)) → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))) |
147 | 131, 142,
146 | mpsyl 68 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((1st ‘𝑢) ∈ 𝑠 ∧ 𝑖 ∈ ω ∧ (1st
‘𝑡) =
∀𝑔𝑖(1st ‘𝑢)) → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏))) |
148 | 147 | 3exp 1118 |
. . . . . . . . . . . . . . . . . . 19
⊢
((1st ‘𝑢) ∈ 𝑠 → (𝑖 ∈ ω → ((1st
‘𝑡) =
∀𝑔𝑖(1st ‘𝑢) → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏))))) |
149 | 148 | com23 86 |
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘𝑢) ∈ 𝑠 → ((1st ‘𝑡) =
∀𝑔𝑖(1st ‘𝑢) → (𝑖 ∈ ω → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏))))) |
150 | 149 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑢) ∈ 𝑠 → (𝑦 ∈ ω → ((1st
‘𝑡) =
∀𝑔𝑖(1st ‘𝑢) → (𝑖 ∈ ω → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))))) |
151 | 150 | exlimiv 1933 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑠(1st ‘𝑢) ∈ 𝑠 → (𝑦 ∈ ω → ((1st
‘𝑡) =
∀𝑔𝑖(1st ‘𝑢) → (𝑖 ∈ ω → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))))) |
152 | 92, 151 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ ((∅ Sat
∅)‘𝑦) ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑦 ∈ ω → ((1st
‘𝑡) =
∀𝑔𝑖(1st ‘𝑢) → (𝑖 ∈ ω → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))))) |
153 | 152 | ex 413 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ ((∅ Sat
∅)‘𝑦) →
(∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑦 ∈ ω → ((1st
‘𝑡) =
∀𝑔𝑖(1st ‘𝑢) → (𝑖 ∈ ω → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏))))))) |
154 | 153 | impcomd 412 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ ((∅ Sat
∅)‘𝑦) →
((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((1st ‘𝑡) =
∀𝑔𝑖(1st ‘𝑢) → (𝑖 ∈ ω → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))))) |
155 | 154 | com24 95 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ ((∅ Sat
∅)‘𝑦) →
(𝑖 ∈ ω →
((1st ‘𝑡)
= ∀𝑔𝑖(1st ‘𝑢) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat
∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))))) |
156 | 155 | rexlimdv 3212 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ ((∅ Sat
∅)‘𝑦) →
(∃𝑖 ∈ ω
(1st ‘𝑡) =
∀𝑔𝑖(1st ‘𝑢) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat
∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏))))) |
157 | 130, 156 | jaod 856 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ((∅ Sat
∅)‘𝑦) →
((∃𝑣 ∈ ((∅
Sat ∅)‘𝑦)(1st ‘𝑡) = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
(1st ‘𝑡) =
∀𝑔𝑖(1st ‘𝑢)) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat
∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏))))) |
158 | 157 | rexlimiv 3209 |
. . . . . . . . 9
⊢
(∃𝑢 ∈
((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st ‘𝑡) = ((1st
‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
(1st ‘𝑡) =
∀𝑔𝑖(1st ‘𝑢)) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat
∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))) |
159 | 158 | adantl 482 |
. . . . . . . 8
⊢
(((2nd ‘𝑡) = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st ‘𝑡) = ((1st
‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
(1st ‘𝑡) =
∀𝑔𝑖(1st ‘𝑢))) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat
∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))) |
160 | | eqeq1 2742 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘𝑡) → (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ↔
(1st ‘𝑡) =
((1st ‘𝑢)⊼𝑔(1st
‘𝑣)))) |
161 | 160 | rexbidv 3226 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘𝑡) → (∃𝑣 ∈ ((∅ Sat
∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ↔
∃𝑣 ∈ ((∅
Sat ∅)‘𝑦)(1st ‘𝑡) = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)))) |
162 | | eqeq1 2742 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘𝑡) → (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ↔ (1st
‘𝑡) =
∀𝑔𝑖(1st ‘𝑢))) |
163 | 162 | rexbidv 3226 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘𝑡) → (∃𝑖 ∈ ω 𝑥 =
∀𝑔𝑖(1st ‘𝑢) ↔ ∃𝑖 ∈ ω (1st ‘𝑡) =
∀𝑔𝑖(1st ‘𝑢))) |
164 | 161, 163 | orbi12d 916 |
. . . . . . . . . . 11
⊢ (𝑥 = (1st ‘𝑡) → ((∃𝑣 ∈ ((∅ Sat
∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) ↔ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st ‘𝑡) = ((1st
‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
(1st ‘𝑡) =
∀𝑔𝑖(1st ‘𝑢)))) |
165 | 164 | rexbidv 3226 |
. . . . . . . . . 10
⊢ (𝑥 = (1st ‘𝑡) → (∃𝑢 ∈ ((∅ Sat
∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st ‘𝑡) = ((1st
‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
(1st ‘𝑡) =
∀𝑔𝑖(1st ‘𝑢)))) |
166 | 165 | anbi2d 629 |
. . . . . . . . 9
⊢ (𝑥 = (1st ‘𝑡) → ((𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢))) ↔ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st ‘𝑡) = ((1st
‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
(1st ‘𝑡) =
∀𝑔𝑖(1st ‘𝑢))))) |
167 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ (𝑧 = (2nd ‘𝑡) → (𝑧 = ∅ ↔ (2nd
‘𝑡) =
∅)) |
168 | 167 | anbi1d 630 |
. . . . . . . . 9
⊢ (𝑧 = (2nd ‘𝑡) → ((𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st ‘𝑡) = ((1st
‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
(1st ‘𝑡) =
∀𝑔𝑖(1st ‘𝑢))) ↔ ((2nd ‘𝑡) = ∅ ∧ ∃𝑢 ∈ ((∅ Sat
∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st ‘𝑡) = ((1st
‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
(1st ‘𝑡) =
∀𝑔𝑖(1st ‘𝑢))))) |
169 | 166, 168 | elopabi 7902 |
. . . . . . . 8
⊢ (𝑡 ∈ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))} → ((2nd ‘𝑡) = ∅ ∧ ∃𝑢 ∈ ((∅ Sat
∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st ‘𝑡) = ((1st
‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
(1st ‘𝑡) =
∀𝑔𝑖(1st ‘𝑢)))) |
170 | 159, 169 | syl11 33 |
. . . . . . 7
⊢ ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))} → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))) |
171 | 77, 170 | jaod 856 |
. . . . . 6
⊢ ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((𝑡 ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝑡 ∈ {〈𝑥, 𝑧〉 ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)))}) → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))) |
172 | 72, 171 | sylbid 239 |
. . . . 5
⊢ ((𝑦 ∈ ω ∧
∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ ((∅ Sat ∅)‘suc
𝑦) → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))) |
173 | 172 | ex 413 |
. . . 4
⊢ (𝑦 ∈ ω →
(∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑡 ∈ ((∅ Sat ∅)‘suc
𝑦) → ∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏))))) |
174 | 173 | ralrimdv 3105 |
. . 3
⊢ (𝑦 ∈ ω →
(∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) → ∀𝑡 ∈ ((∅ Sat ∅)‘suc
𝑦)∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏)))) |
175 | 75 | cbvralvw 3383 |
. . 3
⊢
(∀𝑤 ∈
((∅ Sat ∅)‘suc 𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑡 ∈ ((∅ Sat ∅)‘suc
𝑦)∃𝑎∃𝑏(1st ‘𝑡) ∈ (ω × (𝑎 × 𝑏))) |
176 | 174, 175 | syl6ibr 251 |
. 2
⊢ (𝑦 ∈ ω →
(∀𝑤 ∈ ((∅
Sat ∅)‘𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)) → ∀𝑤 ∈ ((∅ Sat ∅)‘suc
𝑦)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏)))) |
177 | 2, 4, 6, 8, 37, 176 | finds 7745 |
1
⊢ (𝑁 ∈ ω →
∀𝑤 ∈ ((∅
Sat ∅)‘𝑁)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) |