| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcedv | Structured version Visualization version GIF version | ||
| Description: Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 16-Aug-2024.) |
| Ref | Expression |
|---|---|
| spcedv.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| spcedv.2 | ⊢ (𝜑 → 𝜒) |
| spcedv.3 | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| spcedv | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcedv.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | spcedv.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | spcedv.3 | . . 3 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | spcegv 3576 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝜒 → ∃𝑥𝜓)) |
| 5 | 1, 2, 4 | sylc 65 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-clel 2809 |
| This theorem is referenced by: selsALT 5414 zfrep6 7953 wfrlem15OLD 8337 ertr 8734 dom3d 9008 disjenex 9149 domssex2 9151 domssex 9152 brwdom2 9587 infxpenc2lem2 10034 dfac8clem 10046 ac5num 10050 acni2 10060 acnlem 10062 finnisoeu 10127 infpss 10230 cofsmo 10283 axdc4lem 10469 ac6num 10493 axdclem2 10534 hasheqf1od 14371 fz1isolem 14479 wrd2f1tovbij 14979 fsum 15736 ntrivcvgn0 15914 fprod 15957 setsexstruct2 17194 isacs1i 17669 mreacs 17670 gsumval3lem2 19887 eltg3 22900 elptr 23511 nbusgrf1o1 29349 cusgrexg 29423 cusgrfilem3 29437 sizusglecusg 29443 wwlksnextbij 29884 gsumhashmul 33055 fzo0pmtrlast 33103 1arithidom 33552 gblacfnacd 35130 numiunnum 36488 bj-imdirco 37208 eqvreltr 38625 aks6d1c2 42143 sticksstones20 42179 onsucf1lem 43293 onsucf1olem 43294 nnoeomeqom 43336 rp-isfinite5 43541 clrellem 43646 clcnvlem 43647 fundcmpsurinj 47423 prproropen 47522 grimidvtxedg 47898 grimcnv 47901 grimco 47902 isuspgrim0 47907 gricushgr 47930 ushggricedg 47940 uhgrimisgrgric 47944 isgrtri 47955 usgrgrtrirex 47962 isubgr3stgrlem3 47980 isubgr3stgr 47987 uspgrlim 48004 grlimgrtri 48008 grlicref 48017 grlicsym 48018 grlictr 48020 uspgrsprfo 48123 uspgrbispr 48126 1aryenef 48625 2aryenef 48636 eufsnlem 48819 opncldeqv 48876 thincciso 49339 thinccisod 49340 functermceu 49395 idfudiag1 49410 termcarweu 49413 arweutermc 49415 mndtcbas 49458 |
| Copyright terms: Public domain | W3C validator |