![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcedv | Structured version Visualization version GIF version |
Description: Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 16-Aug-2024.) |
Ref | Expression |
---|---|
spcedv.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
spcedv.2 | ⊢ (𝜑 → 𝜒) |
spcedv.3 | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
spcedv | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcedv.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | spcedv.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | spcedv.3 | . . 3 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | |
4 | 3 | spcegv 3588 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝜒 → ∃𝑥𝜓)) |
5 | 1, 2, 4 | sylc 65 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∃wex 1782 ∈ wcel 2107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-clel 2811 |
This theorem is referenced by: selsALT 5440 zfrep6 7941 wfrlem15OLD 8323 ertr 8718 f1dom2gOLD 8966 dom3d 8990 disjenex 9135 domssex2 9137 domssex 9138 brwdom2 9568 infxpenc2lem2 10015 dfac8clem 10027 ac5num 10031 acni2 10041 acnlem 10043 finnisoeu 10108 infpss 10212 cofsmo 10264 axdc4lem 10450 ac6num 10474 axdclem2 10515 hasheqf1od 14313 fz1isolem 14422 wrd2f1tovbij 14911 fsum 15666 ntrivcvgn0 15844 fprod 15885 setsexstruct2 17108 isacs1i 17601 mreacs 17602 gsumval3lem2 19774 eltg3 22465 elptr 23077 nbusgrf1o1 28627 cusgrexg 28701 cusgrfilem3 28714 sizusglecusg 28720 wwlksnextbij 29156 gsumhashmul 32208 bj-imdirco 36071 eqvreltr 37477 sticksstones20 40982 onsucf1lem 42019 onsucf1olem 42020 nnoeomeqom 42062 rp-isfinite5 42268 clrellem 42373 clcnvlem 42374 fundcmpsurinj 46077 prproropen 46176 isomgreqve 46493 isomushgr 46494 isomgrsym 46504 isomgrtr 46507 ushrisomgr 46509 uspgrsprfo 46526 uspgrbispr 46529 1aryenef 47331 2aryenef 47342 eufsnlem 47507 opncldeqv 47534 thincciso 47669 mndtcbas 47707 |
Copyright terms: Public domain | W3C validator |