| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcedv | Structured version Visualization version GIF version | ||
| Description: Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 16-Aug-2024.) |
| Ref | Expression |
|---|---|
| spcedv.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| spcedv.2 | ⊢ (𝜑 → 𝜒) |
| spcedv.3 | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| spcedv | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcedv.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | spcedv.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | spcedv.3 | . . 3 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | spcegv 3580 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝜒 → ∃𝑥𝜓)) |
| 5 | 1, 2, 4 | sylc 65 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∃wex 1778 ∈ wcel 2107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-clel 2808 |
| This theorem is referenced by: selsALT 5424 zfrep6 7961 wfrlem15OLD 8345 ertr 8742 dom3d 9016 disjenex 9157 domssex2 9159 domssex 9160 brwdom2 9595 infxpenc2lem2 10042 dfac8clem 10054 ac5num 10058 acni2 10068 acnlem 10070 finnisoeu 10135 infpss 10238 cofsmo 10291 axdc4lem 10477 ac6num 10501 axdclem2 10542 hasheqf1od 14375 fz1isolem 14483 wrd2f1tovbij 14982 fsum 15739 ntrivcvgn0 15917 fprod 15960 setsexstruct2 17195 isacs1i 17672 mreacs 17673 gsumval3lem2 19893 eltg3 22917 elptr 23528 nbusgrf1o1 29316 cusgrexg 29390 cusgrfilem3 29404 sizusglecusg 29410 wwlksnextbij 29851 gsumhashmul 33008 fzo0pmtrlast 33056 1arithidom 33505 gblacfnacd 35088 numiunnum 36446 bj-imdirco 37166 eqvreltr 38583 aks6d1c2 42106 sticksstones20 42142 onsucf1lem 43259 onsucf1olem 43260 nnoeomeqom 43302 rp-isfinite5 43507 clrellem 43612 clcnvlem 43613 fundcmpsurinj 47369 prproropen 47468 isuspgrim0 47845 grimidvtxedg 47849 grimcnv 47852 grimco 47853 gricushgr 47859 ushggricedg 47869 uhgrimisgrgric 47872 isgrtri 47883 usgrgrtrirex 47890 isubgr3stgrlem3 47908 isubgr3stgr 47915 uspgrlim 47932 grlimgrtri 47936 grlicref 47945 grlicsym 47946 grlictr 47948 uspgrsprfo 48037 uspgrbispr 48040 1aryenef 48539 2aryenef 48550 eufsnlem 48727 opncldeqv 48783 thincciso 49154 thinccisod 49155 functermceu 49208 idfudiag1 49223 termcarweu 49226 arweutermc 49228 mndtcbas 49273 |
| Copyright terms: Public domain | W3C validator |