| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcedv | Structured version Visualization version GIF version | ||
| Description: Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 16-Aug-2024.) |
| Ref | Expression |
|---|---|
| spcedv.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| spcedv.2 | ⊢ (𝜑 → 𝜒) |
| spcedv.3 | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| spcedv | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcedv.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | spcedv.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | spcedv.3 | . . 3 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | spcegv 3560 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝜒 → ∃𝑥𝜓)) |
| 5 | 1, 2, 4 | sylc 65 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-clel 2803 |
| This theorem is referenced by: selsALT 5394 zfrep6 7913 ertr 8663 dom3d 8942 disjenex 9076 domssex2 9078 domssex 9079 brwdom2 9502 infxpenc2lem2 9949 dfac8clem 9961 ac5num 9965 acni2 9975 acnlem 9977 finnisoeu 10042 infpss 10145 cofsmo 10198 axdc4lem 10384 ac6num 10408 axdclem2 10449 hasheqf1od 14294 fz1isolem 14402 wrd2f1tovbij 14902 fsum 15662 ntrivcvgn0 15840 fprod 15883 setsexstruct2 17121 isacs1i 17594 mreacs 17595 gsumval3lem2 19812 eltg3 22825 elptr 23436 nbusgrf1o1 29273 cusgrexg 29347 cusgrfilem3 29361 sizusglecusg 29367 wwlksnextbij 29805 gsumhashmul 32974 fzo0pmtrlast 33022 1arithidom 33481 gblacfnacd 35062 numiunnum 36431 bj-imdirco 37151 eqvreltr 38571 aks6d1c2 42091 sticksstones20 42127 onsucf1lem 43231 onsucf1olem 43232 nnoeomeqom 43274 rp-isfinite5 43479 clrellem 43584 clcnvlem 43585 fundcmpsurinj 47383 prproropen 47482 grimidvtxedg 47858 grimcnv 47861 grimco 47862 isuspgrim0 47867 gricushgr 47890 ushggricedg 47900 uhgrimisgrgric 47904 isgrtri 47915 usgrgrtrirex 47922 isubgr3stgrlem3 47940 isubgr3stgr 47947 uspgrlim 47964 grlimgrtri 47968 grlicref 47977 grlicsym 47978 grlictr 47980 uspgrsprfo 48109 uspgrbispr 48112 1aryenef 48607 2aryenef 48618 eufsnlem 48802 xpco2 48818 opncldeqv 48863 uobffth 49180 uobeqw 49181 thincciso 49415 thinccisod 49416 functermceu 49472 idfudiag1 49487 termcarweu 49490 arweutermc 49492 funcsn 49503 0fucterm 49505 mndtcbas 49543 |
| Copyright terms: Public domain | W3C validator |