| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcedv | Structured version Visualization version GIF version | ||
| Description: Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 16-Aug-2024.) |
| Ref | Expression |
|---|---|
| spcedv.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| spcedv.2 | ⊢ (𝜑 → 𝜒) |
| spcedv.3 | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| spcedv | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcedv.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | spcedv.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | spcedv.3 | . . 3 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | spcegv 3547 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝜒 → ∃𝑥𝜓)) |
| 5 | 1, 2, 4 | sylc 65 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-clel 2806 |
| This theorem is referenced by: selsALT 5377 zfrep6 7882 ertr 8632 dom3d 8911 disjenex 9043 domssex2 9045 domssex 9046 brwdom2 9454 infxpenc2lem2 9906 dfac8clem 9918 ac5num 9922 acni2 9932 acnlem 9934 finnisoeu 9999 infpss 10102 cofsmo 10155 axdc4lem 10341 ac6num 10365 axdclem2 10406 hasheqf1od 14255 fz1isolem 14363 wrd2f1tovbij 14862 fsum 15622 ntrivcvgn0 15800 fprod 15843 setsexstruct2 17081 isacs1i 17558 mreacs 17559 gsumval3lem2 19813 eltg3 22872 elptr 23483 nbusgrf1o1 29343 cusgrexg 29417 cusgrfilem3 29431 sizusglecusg 29437 wwlksnextbij 29875 gsumhashmul 33033 fzo0pmtrlast 33053 1arithidom 33494 fineqvnttrclse 35136 gblacfnacd 35138 numiunnum 36504 bj-imdirco 37224 eqvreltr 38644 aks6d1c2 42163 sticksstones20 42199 onsucf1lem 43302 onsucf1olem 43303 nnoeomeqom 43345 rp-isfinite5 43550 clrellem 43655 clcnvlem 43656 fundcmpsurinj 47440 prproropen 47539 grimidvtxedg 47916 grimcnv 47919 grimco 47920 isuspgrim0 47925 gricushgr 47948 ushggricedg 47958 uhgrimisgrgric 47962 isgrtri 47974 usgrgrtrirex 47981 isubgr3stgrlem3 47999 isubgr3stgr 48006 uspgrlim 48023 grlimgrtri 48034 grlicref 48043 grlicsym 48044 grlictr 48046 uspgrsprfo 48179 uspgrbispr 48182 1aryenef 48677 2aryenef 48688 eufsnlem 48872 xpco2 48888 opncldeqv 48933 uobffth 49250 uobeqw 49251 thincciso 49485 thinccisod 49486 functermceu 49542 idfudiag1 49557 termcarweu 49560 arweutermc 49562 funcsn 49573 0fucterm 49575 mndtcbas 49613 |
| Copyright terms: Public domain | W3C validator |