| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcedv | Structured version Visualization version GIF version | ||
| Description: Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 16-Aug-2024.) |
| Ref | Expression |
|---|---|
| spcedv.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| spcedv.2 | ⊢ (𝜑 → 𝜒) |
| spcedv.3 | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| spcedv | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcedv.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | spcedv.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | spcedv.3 | . . 3 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | spcegv 3554 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝜒 → ∃𝑥𝜓)) |
| 5 | 1, 2, 4 | sylc 65 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-clel 2803 |
| This theorem is referenced by: selsALT 5386 zfrep6 7897 ertr 8647 dom3d 8926 disjenex 9059 domssex2 9061 domssex 9062 brwdom2 9484 infxpenc2lem2 9933 dfac8clem 9945 ac5num 9949 acni2 9959 acnlem 9961 finnisoeu 10026 infpss 10129 cofsmo 10182 axdc4lem 10368 ac6num 10392 axdclem2 10433 hasheqf1od 14278 fz1isolem 14386 wrd2f1tovbij 14885 fsum 15645 ntrivcvgn0 15823 fprod 15866 setsexstruct2 17104 isacs1i 17581 mreacs 17582 gsumval3lem2 19803 eltg3 22865 elptr 23476 nbusgrf1o1 29333 cusgrexg 29407 cusgrfilem3 29421 sizusglecusg 29427 wwlksnextbij 29865 gsumhashmul 33027 fzo0pmtrlast 33047 1arithidom 33487 gblacfnacd 35077 numiunnum 36446 bj-imdirco 37166 eqvreltr 38586 aks6d1c2 42106 sticksstones20 42142 onsucf1lem 43245 onsucf1olem 43246 nnoeomeqom 43288 rp-isfinite5 43493 clrellem 43598 clcnvlem 43599 fundcmpsurinj 47397 prproropen 47496 grimidvtxedg 47873 grimcnv 47876 grimco 47877 isuspgrim0 47882 gricushgr 47905 ushggricedg 47915 uhgrimisgrgric 47919 isgrtri 47931 usgrgrtrirex 47938 isubgr3stgrlem3 47956 isubgr3stgr 47963 uspgrlim 47980 grlimgrtri 47991 grlicref 48000 grlicsym 48001 grlictr 48003 uspgrsprfo 48136 uspgrbispr 48139 1aryenef 48634 2aryenef 48645 eufsnlem 48829 xpco2 48845 opncldeqv 48890 uobffth 49207 uobeqw 49208 thincciso 49442 thinccisod 49443 functermceu 49499 idfudiag1 49514 termcarweu 49517 arweutermc 49519 funcsn 49530 0fucterm 49532 mndtcbas 49570 |
| Copyright terms: Public domain | W3C validator |