![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcedv | Structured version Visualization version GIF version |
Description: Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 16-Aug-2024.) |
Ref | Expression |
---|---|
spcedv.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
spcedv.2 | ⊢ (𝜑 → 𝜒) |
spcedv.3 | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
spcedv | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcedv.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | spcedv.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | spcedv.3 | . . 3 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | |
4 | 3 | spcegv 3597 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝜒 → ∃𝑥𝜓)) |
5 | 1, 2, 4 | sylc 65 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∃wex 1776 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-clel 2814 |
This theorem is referenced by: selsALT 5450 zfrep6 7978 wfrlem15OLD 8362 ertr 8759 dom3d 9033 disjenex 9174 domssex2 9176 domssex 9177 brwdom2 9611 infxpenc2lem2 10058 dfac8clem 10070 ac5num 10074 acni2 10084 acnlem 10086 finnisoeu 10151 infpss 10254 cofsmo 10307 axdc4lem 10493 ac6num 10517 axdclem2 10558 hasheqf1od 14389 fz1isolem 14497 wrd2f1tovbij 14996 fsum 15753 ntrivcvgn0 15931 fprod 15974 setsexstruct2 17209 isacs1i 17702 mreacs 17703 gsumval3lem2 19939 eltg3 22985 elptr 23597 nbusgrf1o1 29402 cusgrexg 29476 cusgrfilem3 29490 sizusglecusg 29496 wwlksnextbij 29932 gsumhashmul 33047 fzo0pmtrlast 33095 1arithidom 33545 gblacfnacd 35092 numiunnum 36453 bj-imdirco 37173 eqvreltr 38589 aks6d1c2 42112 sticksstones20 42148 onsucf1lem 43259 onsucf1olem 43260 nnoeomeqom 43302 rp-isfinite5 43507 clrellem 43612 clcnvlem 43613 fundcmpsurinj 47334 prproropen 47433 isuspgrim0 47810 grimidvtxedg 47814 grimcnv 47817 grimco 47818 gricushgr 47824 ushggricedg 47834 uhgrimisgrgric 47837 isgrtri 47848 usgrgrtrirex 47853 isubgr3stgrlem3 47871 isubgr3stgr 47878 uspgrlim 47895 grlimgrtri 47899 grlicref 47908 grlicsym 47909 grlictr 47911 uspgrsprfo 47992 uspgrbispr 47995 1aryenef 48495 2aryenef 48506 eufsnlem 48671 opncldeqv 48698 thincciso 48849 thinccisod 48850 mndtcbas 48890 |
Copyright terms: Public domain | W3C validator |