| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcedv | Structured version Visualization version GIF version | ||
| Description: Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 16-Aug-2024.) |
| Ref | Expression |
|---|---|
| spcedv.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| spcedv.2 | ⊢ (𝜑 → 𝜒) |
| spcedv.3 | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| spcedv | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcedv.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | spcedv.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | spcedv.3 | . . 3 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | spcegv 3563 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝜒 → ∃𝑥𝜓)) |
| 5 | 1, 2, 4 | sylc 65 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-clel 2803 |
| This theorem is referenced by: selsALT 5399 zfrep6 7933 ertr 8686 dom3d 8965 disjenex 9099 domssex2 9101 domssex 9102 brwdom2 9526 infxpenc2lem2 9973 dfac8clem 9985 ac5num 9989 acni2 9999 acnlem 10001 finnisoeu 10066 infpss 10169 cofsmo 10222 axdc4lem 10408 ac6num 10432 axdclem2 10473 hasheqf1od 14318 fz1isolem 14426 wrd2f1tovbij 14926 fsum 15686 ntrivcvgn0 15864 fprod 15907 setsexstruct2 17145 isacs1i 17618 mreacs 17619 gsumval3lem2 19836 eltg3 22849 elptr 23460 nbusgrf1o1 29297 cusgrexg 29371 cusgrfilem3 29385 sizusglecusg 29391 wwlksnextbij 29832 gsumhashmul 33001 fzo0pmtrlast 33049 1arithidom 33508 gblacfnacd 35089 numiunnum 36458 bj-imdirco 37178 eqvreltr 38598 aks6d1c2 42118 sticksstones20 42154 onsucf1lem 43258 onsucf1olem 43259 nnoeomeqom 43301 rp-isfinite5 43506 clrellem 43611 clcnvlem 43612 fundcmpsurinj 47410 prproropen 47509 grimidvtxedg 47885 grimcnv 47888 grimco 47889 isuspgrim0 47894 gricushgr 47917 ushggricedg 47927 uhgrimisgrgric 47931 isgrtri 47942 usgrgrtrirex 47949 isubgr3stgrlem3 47967 isubgr3stgr 47974 uspgrlim 47991 grlimgrtri 47995 grlicref 48004 grlicsym 48005 grlictr 48007 uspgrsprfo 48136 uspgrbispr 48139 1aryenef 48634 2aryenef 48645 eufsnlem 48829 xpco2 48845 opncldeqv 48890 uobffth 49207 uobeqw 49208 thincciso 49442 thinccisod 49443 functermceu 49499 idfudiag1 49514 termcarweu 49517 arweutermc 49519 funcsn 49530 0fucterm 49532 mndtcbas 49570 |
| Copyright terms: Public domain | W3C validator |