![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcedv | Structured version Visualization version GIF version |
Description: Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 16-Aug-2024.) |
Ref | Expression |
---|---|
spcedv.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
spcedv.2 | ⊢ (𝜑 → 𝜒) |
spcedv.3 | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
spcedv | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcedv.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | spcedv.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | spcedv.3 | . . 3 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | |
4 | 3 | spcegv 3610 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝜒 → ∃𝑥𝜓)) |
5 | 1, 2, 4 | sylc 65 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∃wex 1777 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-clel 2819 |
This theorem is referenced by: selsALT 5459 zfrep6 7995 wfrlem15OLD 8379 ertr 8778 f1dom2gOLD 9030 dom3d 9054 disjenex 9201 domssex2 9203 domssex 9204 brwdom2 9642 infxpenc2lem2 10089 dfac8clem 10101 ac5num 10105 acni2 10115 acnlem 10117 finnisoeu 10182 infpss 10285 cofsmo 10338 axdc4lem 10524 ac6num 10548 axdclem2 10589 hasheqf1od 14402 fz1isolem 14510 wrd2f1tovbij 15009 fsum 15768 ntrivcvgn0 15946 fprod 15989 setsexstruct2 17222 isacs1i 17715 mreacs 17716 gsumval3lem2 19948 eltg3 22990 elptr 23602 nbusgrf1o1 29405 cusgrexg 29479 cusgrfilem3 29493 sizusglecusg 29499 wwlksnextbij 29935 gsumhashmul 33040 fzo0pmtrlast 33085 1arithidom 33530 gblacfnacd 35075 numiunnum 36436 bj-imdirco 37156 eqvreltr 38563 aks6d1c2 42087 sticksstones20 42123 onsucf1lem 43231 onsucf1olem 43232 nnoeomeqom 43274 rp-isfinite5 43479 clrellem 43584 clcnvlem 43585 fundcmpsurinj 47283 prproropen 47382 isuspgrim0 47756 grimidvtxedg 47760 grimcnv 47763 grimco 47764 gricushgr 47770 ushggricedg 47780 uhgrimisgrgric 47783 isgrtri 47794 usgrgrtrirex 47799 uspgrlim 47816 grlimgrtri 47820 grlicref 47829 grlicsym 47830 grlictr 47832 uspgrsprfo 47871 uspgrbispr 47874 1aryenef 48379 2aryenef 48390 eufsnlem 48554 opncldeqv 48581 thincciso 48716 mndtcbas 48754 |
Copyright terms: Public domain | W3C validator |