![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcedv | Structured version Visualization version GIF version |
Description: Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 16-Aug-2024.) |
Ref | Expression |
---|---|
spcedv.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
spcedv.2 | ⊢ (𝜑 → 𝜒) |
spcedv.3 | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
spcedv | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcedv.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | spcedv.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | spcedv.3 | . . 3 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | |
4 | 3 | spcegv 3587 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝜒 → ∃𝑥𝜓)) |
5 | 1, 2, 4 | sylc 65 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∃wex 1780 ∈ wcel 2105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-clel 2809 |
This theorem is referenced by: selsALT 5439 zfrep6 7945 wfrlem15OLD 8329 ertr 8724 f1dom2gOLD 8972 dom3d 8996 disjenex 9141 domssex2 9143 domssex 9144 brwdom2 9574 infxpenc2lem2 10021 dfac8clem 10033 ac5num 10037 acni2 10047 acnlem 10049 finnisoeu 10114 infpss 10218 cofsmo 10270 axdc4lem 10456 ac6num 10480 axdclem2 10521 hasheqf1od 14320 fz1isolem 14429 wrd2f1tovbij 14918 fsum 15673 ntrivcvgn0 15851 fprod 15892 setsexstruct2 17115 isacs1i 17608 mreacs 17609 gsumval3lem2 19822 eltg3 22785 elptr 23397 nbusgrf1o1 29060 cusgrexg 29134 cusgrfilem3 29147 sizusglecusg 29153 wwlksnextbij 29589 gsumhashmul 32644 bj-imdirco 36535 eqvreltr 37941 sticksstones20 41449 onsucf1lem 42482 onsucf1olem 42483 nnoeomeqom 42525 rp-isfinite5 42731 clrellem 42836 clcnvlem 42837 fundcmpsurinj 46536 prproropen 46635 isomgreqve 46952 isomushgr 46953 isomgrsym 46963 isomgrtr 46966 ushrisomgr 46968 uspgrsprfo 46985 uspgrbispr 46988 1aryenef 47493 2aryenef 47504 eufsnlem 47669 opncldeqv 47696 thincciso 47831 mndtcbas 47869 |
Copyright terms: Public domain | W3C validator |