| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcedv | Structured version Visualization version GIF version | ||
| Description: Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 16-Aug-2024.) |
| Ref | Expression |
|---|---|
| spcedv.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| spcedv.2 | ⊢ (𝜑 → 𝜒) |
| spcedv.3 | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| spcedv | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcedv.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | spcedv.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | spcedv.3 | . . 3 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | spcegv 3548 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝜒 → ∃𝑥𝜓)) |
| 5 | 1, 2, 4 | sylc 65 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-clel 2808 |
| This theorem is referenced by: selsALT 5386 zfrep6 7896 ertr 8646 dom3d 8927 disjenex 9059 domssex2 9061 domssex 9062 brwdom2 9470 infxpenc2lem2 9922 dfac8clem 9934 ac5num 9938 acni2 9948 acnlem 9950 finnisoeu 10015 infpss 10118 cofsmo 10171 axdc4lem 10357 ac6num 10381 axdclem2 10422 hasheqf1od 14267 fz1isolem 14375 wrd2f1tovbij 14874 fsum 15634 ntrivcvgn0 15812 fprod 15855 setsexstruct2 17093 isacs1i 17571 mreacs 17572 gsumval3lem2 19826 eltg3 22897 elptr 23508 nbusgrf1o1 29369 cusgrexg 29443 cusgrfilem3 29457 sizusglecusg 29463 wwlksnextbij 29901 gsumhashmul 33078 fzo0pmtrlast 33102 1arithidom 33546 fineqvnttrclse 35216 gblacfnacd 35218 numiunnum 36586 bj-imdirco 37307 eqvreltr 38776 aks6d1c2 42296 sticksstones20 42332 onsucf1lem 43426 onsucf1olem 43427 nnoeomeqom 43469 rp-isfinite5 43674 clrellem 43779 clcnvlem 43780 fundcmpsurinj 47571 prproropen 47670 grimidvtxedg 48047 grimcnv 48050 grimco 48051 isuspgrim0 48056 gricushgr 48079 ushggricedg 48089 uhgrimisgrgric 48093 isgrtri 48105 usgrgrtrirex 48112 isubgr3stgrlem3 48130 isubgr3stgr 48137 uspgrlim 48154 grlimgrtri 48165 grlicref 48174 grlicsym 48175 grlictr 48177 uspgrsprfo 48310 uspgrbispr 48313 1aryenef 48807 2aryenef 48818 eufsnlem 49002 xpco2 49018 opncldeqv 49063 uobffth 49379 uobeqw 49380 thincciso 49614 thinccisod 49615 functermceu 49671 idfudiag1 49686 termcarweu 49689 arweutermc 49691 funcsn 49702 0fucterm 49704 mndtcbas 49742 |
| Copyright terms: Public domain | W3C validator |