| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcedv | Structured version Visualization version GIF version | ||
| Description: Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 16-Aug-2024.) |
| Ref | Expression |
|---|---|
| spcedv.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| spcedv.2 | ⊢ (𝜑 → 𝜒) |
| spcedv.3 | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| spcedv | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcedv.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | spcedv.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | spcedv.3 | . . 3 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | spcegv 3566 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝜒 → ∃𝑥𝜓)) |
| 5 | 1, 2, 4 | sylc 65 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-clel 2804 |
| This theorem is referenced by: selsALT 5402 zfrep6 7936 ertr 8689 dom3d 8968 disjenex 9105 domssex2 9107 domssex 9108 brwdom2 9533 infxpenc2lem2 9980 dfac8clem 9992 ac5num 9996 acni2 10006 acnlem 10008 finnisoeu 10073 infpss 10176 cofsmo 10229 axdc4lem 10415 ac6num 10439 axdclem2 10480 hasheqf1od 14325 fz1isolem 14433 wrd2f1tovbij 14933 fsum 15693 ntrivcvgn0 15871 fprod 15914 setsexstruct2 17152 isacs1i 17625 mreacs 17626 gsumval3lem2 19843 eltg3 22856 elptr 23467 nbusgrf1o1 29304 cusgrexg 29378 cusgrfilem3 29392 sizusglecusg 29398 wwlksnextbij 29839 gsumhashmul 33008 fzo0pmtrlast 33056 1arithidom 33515 gblacfnacd 35096 numiunnum 36465 bj-imdirco 37185 eqvreltr 38605 aks6d1c2 42125 sticksstones20 42161 onsucf1lem 43265 onsucf1olem 43266 nnoeomeqom 43308 rp-isfinite5 43513 clrellem 43618 clcnvlem 43619 fundcmpsurinj 47414 prproropen 47513 grimidvtxedg 47889 grimcnv 47892 grimco 47893 isuspgrim0 47898 gricushgr 47921 ushggricedg 47931 uhgrimisgrgric 47935 isgrtri 47946 usgrgrtrirex 47953 isubgr3stgrlem3 47971 isubgr3stgr 47978 uspgrlim 47995 grlimgrtri 47999 grlicref 48008 grlicsym 48009 grlictr 48011 uspgrsprfo 48140 uspgrbispr 48143 1aryenef 48638 2aryenef 48649 eufsnlem 48833 xpco2 48849 opncldeqv 48894 uobffth 49211 uobeqw 49212 thincciso 49446 thinccisod 49447 functermceu 49503 idfudiag1 49518 termcarweu 49521 arweutermc 49523 funcsn 49534 0fucterm 49536 mndtcbas 49574 |
| Copyright terms: Public domain | W3C validator |