Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spcedv | Structured version Visualization version GIF version |
Description: Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 16-Aug-2024.) |
Ref | Expression |
---|---|
spcedv.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
spcedv.2 | ⊢ (𝜑 → 𝜒) |
spcedv.3 | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
spcedv | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcedv.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | spcedv.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | spcedv.3 | . . 3 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | |
4 | 3 | spcegv 3534 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝜒 → ∃𝑥𝜓)) |
5 | 1, 2, 4 | sylc 65 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∃wex 1785 ∈ wcel 2109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-clel 2817 |
This theorem is referenced by: zfrep6 7784 wfrlem15OLD 8138 ertr 8487 f1dom2gOLD 8729 dom3d 8753 disjenex 8887 domssex2 8889 domssex 8890 brwdom2 9293 infxpenc2lem2 9760 dfac8clem 9772 ac5num 9776 acni2 9786 acnlem 9788 finnisoeu 9853 infpss 9957 cofsmo 10009 axdc4lem 10195 ac6num 10219 axdclem2 10260 hasheqf1od 14049 fz1isolem 14156 wrd2f1tovbij 14656 fsum 15413 ntrivcvgn0 15591 fprod 15632 setsexstruct2 16857 isacs1i 17347 mreacs 17348 gsumval3lem2 19488 eltg3 22093 elptr 22705 nbusgrf1o1 27718 cusgrexg 27792 cusgrfilem3 27805 sizusglecusg 27811 wwlksnextbij 28246 gsumhashmul 31295 bj-imdirco 35340 eqvreltr 36699 sticksstones20 40102 clrellem 41183 clcnvlem 41184 fundcmpsurinj 44813 prproropen 44912 isomgreqve 45229 isomushgr 45230 isomgrsym 45240 isomgrtr 45243 ushrisomgr 45245 uspgrsprfo 45262 uspgrbispr 45265 1aryenef 45943 2aryenef 45954 eufsnlem 46120 opncldeqv 46147 thincciso 46282 mndtcbas 46320 |
Copyright terms: Public domain | W3C validator |