![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snexg | Structured version Visualization version GIF version |
Description: A singleton built on a set is a set. Special case of snex 5430 which does not require ax-nul 5305 and is intuitionistically valid. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) Extract from snex 5430 and shorten proof. (Revised by BJ, 15-Jan-2025.) |
Ref | Expression |
---|---|
snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4637 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | vsnex 5428 | . . 3 ⊢ {𝑥} ∈ V | |
3 | 1, 2 | eqeltrrdi 2840 | . 2 ⊢ (𝑥 = 𝐴 → {𝐴} ∈ V) |
4 | 3 | vtocleg 3540 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 Vcvv 3472 {csn 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-un 3952 df-sn 4628 df-pr 4630 |
This theorem is referenced by: snex 5430 selsALT 5438 snelpwg 5441 intidg 5456 |
Copyright terms: Public domain | W3C validator |