MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snexg Structured version   Visualization version   GIF version

Theorem snexg 5429
Description: A singleton built on a set is a set. Special case of snex 5430 which does not require ax-nul 5305 and is intuitionistically valid. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) Extract from snex 5430 and shorten proof. (Revised by BJ, 15-Jan-2025.)
Assertion
Ref Expression
snexg (𝐴𝑉 → {𝐴} ∈ V)

Proof of Theorem snexg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4637 . . 3 (𝑥 = 𝐴 → {𝑥} = {𝐴})
2 vsnex 5428 . . 3 {𝑥} ∈ V
31, 2eqeltrrdi 2840 . 2 (𝑥 = 𝐴 → {𝐴} ∈ V)
43vtocleg 3540 1 (𝐴𝑉 → {𝐴} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  Vcvv 3472  {csn 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-v 3474  df-un 3952  df-sn 4628  df-pr 4630
This theorem is referenced by:  snex  5430  selsALT  5438  snelpwg  5441  intidg  5456
  Copyright terms: Public domain W3C validator