| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snexg | Structured version Visualization version GIF version | ||
| Description: A singleton built on a set is a set. Special case of snex 5406 which does not require ax-nul 5276 and is intuitionistically valid. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) Extract from snex 5406 and shorten proof. (Revised by BJ, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4611 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 2 | vsnex 5404 | . . 3 ⊢ {𝑥} ∈ V | |
| 3 | 1, 2 | eqeltrrdi 2843 | . 2 ⊢ (𝑥 = 𝐴 → {𝐴} ∈ V) |
| 4 | 3 | vtocleg 3532 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-sn 4602 df-pr 4604 |
| This theorem is referenced by: snex 5406 selsALT 5414 snelpwg 5417 intidg 5432 onscutlt 28217 |
| Copyright terms: Public domain | W3C validator |