MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snexg Structured version   Visualization version   GIF version

Theorem snexg 5371
Description: A singleton built on a set is a set. Special case of snex 5372 which does not require ax-nul 5242 and is intuitionistically valid. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) Extract from snex 5372 and shorten proof. (Revised by BJ, 15-Jan-2025.)
Assertion
Ref Expression
snexg (𝐴𝑉 → {𝐴} ∈ V)

Proof of Theorem snexg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4583 . . 3 (𝑥 = 𝐴 → {𝑥} = {𝐴})
2 vsnex 5370 . . 3 {𝑥} ∈ V
31, 2eqeltrrdi 2840 . 2 (𝑥 = 𝐴 → {𝐴} ∈ V)
43vtocleg 3506 1 (𝐴𝑉 → {𝐴} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-sn 4574  df-pr 4576
This theorem is referenced by:  snex  5372  selsALT  5380  snelpwg  5382  intidg  5396  onscutlt  28201
  Copyright terms: Public domain W3C validator