MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snexg Structured version   Visualization version   GIF version

Theorem snexg 5393
Description: A singleton built on a set is a set. Special case of snex 5394 which does not require ax-nul 5264 and is intuitionistically valid. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) Extract from snex 5394 and shorten proof. (Revised by BJ, 15-Jan-2025.)
Assertion
Ref Expression
snexg (𝐴𝑉 → {𝐴} ∈ V)

Proof of Theorem snexg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4602 . . 3 (𝑥 = 𝐴 → {𝑥} = {𝐴})
2 vsnex 5392 . . 3 {𝑥} ∈ V
31, 2eqeltrrdi 2838 . 2 (𝑥 = 𝐴 → {𝐴} ∈ V)
43vtocleg 3522 1 (𝐴𝑉 → {𝐴} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-un 3922  df-sn 4593  df-pr 4595
This theorem is referenced by:  snex  5394  selsALT  5402  snelpwg  5405  intidg  5420  onscutlt  28172
  Copyright terms: Public domain W3C validator