| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snexg | Structured version Visualization version GIF version | ||
| Description: A singleton built on a set is a set. Special case of snex 5372 which does not require ax-nul 5242 and is intuitionistically valid. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) Extract from snex 5372 and shorten proof. (Revised by BJ, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4583 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 2 | vsnex 5370 | . . 3 ⊢ {𝑥} ∈ V | |
| 3 | 1, 2 | eqeltrrdi 2840 | . 2 ⊢ (𝑥 = 𝐴 → {𝐴} ∈ V) |
| 4 | 3 | vtocleg 3506 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: snex 5372 selsALT 5380 snelpwg 5382 intidg 5396 onscutlt 28201 |
| Copyright terms: Public domain | W3C validator |