![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snexg | Structured version Visualization version GIF version |
Description: A singleton built on a set is a set. Special case of snex 5451 which does not require ax-nul 5324 and is intuitionistically valid. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) Extract from snex 5451 and shorten proof. (Revised by BJ, 15-Jan-2025.) |
Ref | Expression |
---|---|
snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4658 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | vsnex 5449 | . . 3 ⊢ {𝑥} ∈ V | |
3 | 1, 2 | eqeltrrdi 2853 | . 2 ⊢ (𝑥 = 𝐴 → {𝐴} ∈ V) |
4 | 3 | vtocleg 3565 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: snex 5451 selsALT 5459 snelpwg 5462 intidg 5477 |
Copyright terms: Public domain | W3C validator |