| Step | Hyp | Ref
| Expression |
| 1 | | fveq1 6886 |
. . . . . . . . . 10
⊢ (𝐹 = 𝐺 → (𝐹‘𝑤) = (𝐺‘𝑤)) |
| 2 | 1 | sseq1d 3997 |
. . . . . . . . 9
⊢ (𝐹 = 𝐺 → ((𝐹‘𝑤) ⊆ 𝑧 ↔ (𝐺‘𝑤) ⊆ 𝑧)) |
| 3 | 2 | imbi2d 340 |
. . . . . . . 8
⊢ (𝐹 = 𝐺 → ((𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧) ↔ (𝑤 ⊆ 𝑧 → (𝐺‘𝑤) ⊆ 𝑧))) |
| 4 | 3 | imbi2d 340 |
. . . . . . 7
⊢ (𝐹 = 𝐺 → ((𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) ↔ (𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐺‘𝑤) ⊆ 𝑧)))) |
| 5 | 4 | albidv 1919 |
. . . . . 6
⊢ (𝐹 = 𝐺 → (∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) ↔ ∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐺‘𝑤) ⊆ 𝑧)))) |
| 6 | 5 | imbi1d 341 |
. . . . 5
⊢ (𝐹 = 𝐺 → ((∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧) ↔ (∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐺‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧))) |
| 7 | 6 | albidv 1919 |
. . . 4
⊢ (𝐹 = 𝐺 → (∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧) ↔ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐺‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧))) |
| 8 | 7 | abbidv 2800 |
. . 3
⊢ (𝐹 = 𝐺 → {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐺‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) |
| 9 | 8 | unieqd 4902 |
. 2
⊢ (𝐹 = 𝐺 → ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐺‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}) |
| 10 | | df-setrecs 49199 |
. 2
⊢
setrecs(𝐹) = ∪ {𝑦
∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
| 11 | | df-setrecs 49199 |
. 2
⊢
setrecs(𝐺) = ∪ {𝑦
∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐺‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
| 12 | 9, 10, 11 | 3eqtr4g 2794 |
1
⊢ (𝐹 = 𝐺 → setrecs(𝐹) = setrecs(𝐺)) |