Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrecseq Structured version   Visualization version   GIF version

Theorem setrecseq 46062
Description: Equality theorem for set recursion. (Contributed by Emmett Weisz, 17-Feb-2021.)
Assertion
Ref Expression
setrecseq (𝐹 = 𝐺 → setrecs(𝐹) = setrecs(𝐺))

Proof of Theorem setrecseq
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6716 . . . . . . . . . 10 (𝐹 = 𝐺 → (𝐹𝑤) = (𝐺𝑤))
21sseq1d 3932 . . . . . . . . 9 (𝐹 = 𝐺 → ((𝐹𝑤) ⊆ 𝑧 ↔ (𝐺𝑤) ⊆ 𝑧))
32imbi2d 344 . . . . . . . 8 (𝐹 = 𝐺 → ((𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧) ↔ (𝑤𝑧 → (𝐺𝑤) ⊆ 𝑧)))
43imbi2d 344 . . . . . . 7 (𝐹 = 𝐺 → ((𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) ↔ (𝑤𝑦 → (𝑤𝑧 → (𝐺𝑤) ⊆ 𝑧))))
54albidv 1928 . . . . . 6 (𝐹 = 𝐺 → (∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) ↔ ∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐺𝑤) ⊆ 𝑧))))
65imbi1d 345 . . . . 5 (𝐹 = 𝐺 → ((∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧) ↔ (∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐺𝑤) ⊆ 𝑧)) → 𝑦𝑧)))
76albidv 1928 . . . 4 (𝐹 = 𝐺 → (∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧) ↔ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐺𝑤) ⊆ 𝑧)) → 𝑦𝑧)))
87abbidv 2807 . . 3 (𝐹 = 𝐺 → {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐺𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
98unieqd 4833 . 2 (𝐹 = 𝐺 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐺𝑤) ⊆ 𝑧)) → 𝑦𝑧)})
10 df-setrecs 46061 . 2 setrecs(𝐹) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
11 df-setrecs 46061 . 2 setrecs(𝐺) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐺𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
129, 10, 113eqtr4g 2803 1 (𝐹 = 𝐺 → setrecs(𝐹) = setrecs(𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1541   = wceq 1543  {cab 2714  wss 3866   cuni 4819  cfv 6380  setrecscsetrecs 46060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-in 3873  df-ss 3883  df-uni 4820  df-br 5054  df-iota 6338  df-fv 6388  df-setrecs 46061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator