Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfsetrecs | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for setrecs. (Contributed by Emmett Weisz, 21-Oct-2021.) |
Ref | Expression |
---|---|
nfsetrecs.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfsetrecs | ⊢ Ⅎ𝑥setrecs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-setrecs 46061 | . 2 ⊢ setrecs(𝐹) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
2 | nfv 1922 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑤 ⊆ 𝑦 | |
3 | nfv 1922 | . . . . . . . . 9 ⊢ Ⅎ𝑥 𝑤 ⊆ 𝑧 | |
4 | nfsetrecs.1 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2904 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝑤 | |
6 | 4, 5 | nffv 6727 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(𝐹‘𝑤) |
7 | nfcv 2904 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑧 | |
8 | 6, 7 | nfss 3892 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝐹‘𝑤) ⊆ 𝑧 |
9 | 3, 8 | nfim 1904 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧) |
10 | 2, 9 | nfim 1904 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) |
11 | 10 | nfal 2322 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) |
12 | nfv 1922 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝑧 | |
13 | 11, 12 | nfim 1904 | . . . . 5 ⊢ Ⅎ𝑥(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧) |
14 | 13 | nfal 2322 | . . . 4 ⊢ Ⅎ𝑥∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧) |
15 | 14 | nfab 2910 | . . 3 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
16 | 15 | nfuni 4826 | . 2 ⊢ Ⅎ𝑥∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
17 | 1, 16 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑥setrecs(𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1541 {cab 2714 Ⅎwnfc 2884 ⊆ wss 3866 ∪ cuni 4819 ‘cfv 6380 setrecscsetrecs 46060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-iota 6338 df-fv 6388 df-setrecs 46061 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |