Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfsetrecs Structured version   Visualization version   GIF version

Theorem nfsetrecs 46392
Description: Bound-variable hypothesis builder for setrecs. (Contributed by Emmett Weisz, 21-Oct-2021.)
Hypothesis
Ref Expression
nfsetrecs.1 𝑥𝐹
Assertion
Ref Expression
nfsetrecs 𝑥setrecs(𝐹)

Proof of Theorem nfsetrecs
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-setrecs 46390 . 2 setrecs(𝐹) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
2 nfv 1917 . . . . . . . 8 𝑥 𝑤𝑦
3 nfv 1917 . . . . . . . . 9 𝑥 𝑤𝑧
4 nfsetrecs.1 . . . . . . . . . . 11 𝑥𝐹
5 nfcv 2907 . . . . . . . . . . 11 𝑥𝑤
64, 5nffv 6784 . . . . . . . . . 10 𝑥(𝐹𝑤)
7 nfcv 2907 . . . . . . . . . 10 𝑥𝑧
86, 7nfss 3913 . . . . . . . . 9 𝑥(𝐹𝑤) ⊆ 𝑧
93, 8nfim 1899 . . . . . . . 8 𝑥(𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)
102, 9nfim 1899 . . . . . . 7 𝑥(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧))
1110nfal 2317 . . . . . 6 𝑥𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧))
12 nfv 1917 . . . . . 6 𝑥 𝑦𝑧
1311, 12nfim 1899 . . . . 5 𝑥(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)
1413nfal 2317 . . . 4 𝑥𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)
1514nfab 2913 . . 3 𝑥{𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
1615nfuni 4846 . 2 𝑥 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
171, 16nfcxfr 2905 1 𝑥setrecs(𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  {cab 2715  wnfc 2887  wss 3887   cuni 4839  cfv 6433  setrecscsetrecs 46389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-setrecs 46390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator