![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfsetrecs | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for setrecs. (Contributed by Emmett Weisz, 21-Oct-2021.) |
Ref | Expression |
---|---|
nfsetrecs.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfsetrecs | ⊢ Ⅎ𝑥setrecs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-setrecs 48915 | . 2 ⊢ setrecs(𝐹) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
2 | nfv 1912 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑤 ⊆ 𝑦 | |
3 | nfv 1912 | . . . . . . . . 9 ⊢ Ⅎ𝑥 𝑤 ⊆ 𝑧 | |
4 | nfsetrecs.1 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2903 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝑤 | |
6 | 4, 5 | nffv 6917 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(𝐹‘𝑤) |
7 | nfcv 2903 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑧 | |
8 | 6, 7 | nfss 3988 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝐹‘𝑤) ⊆ 𝑧 |
9 | 3, 8 | nfim 1894 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧) |
10 | 2, 9 | nfim 1894 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) |
11 | 10 | nfal 2322 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) |
12 | nfv 1912 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝑧 | |
13 | 11, 12 | nfim 1894 | . . . . 5 ⊢ Ⅎ𝑥(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧) |
14 | 13 | nfal 2322 | . . . 4 ⊢ Ⅎ𝑥∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧) |
15 | 14 | nfab 2909 | . . 3 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
16 | 15 | nfuni 4919 | . 2 ⊢ Ⅎ𝑥∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
17 | 1, 16 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥setrecs(𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 {cab 2712 Ⅎwnfc 2888 ⊆ wss 3963 ∪ cuni 4912 ‘cfv 6563 setrecscsetrecs 48914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-setrecs 48915 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |