Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfsetrecs Structured version   Visualization version   GIF version

Theorem nfsetrecs 47721
Description: Bound-variable hypothesis builder for setrecs. (Contributed by Emmett Weisz, 21-Oct-2021.)
Hypothesis
Ref Expression
nfsetrecs.1 𝑥𝐹
Assertion
Ref Expression
nfsetrecs 𝑥setrecs(𝐹)

Proof of Theorem nfsetrecs
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-setrecs 47719 . 2 setrecs(𝐹) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
2 nfv 1917 . . . . . . . 8 𝑥 𝑤𝑦
3 nfv 1917 . . . . . . . . 9 𝑥 𝑤𝑧
4 nfsetrecs.1 . . . . . . . . . . 11 𝑥𝐹
5 nfcv 2903 . . . . . . . . . . 11 𝑥𝑤
64, 5nffv 6901 . . . . . . . . . 10 𝑥(𝐹𝑤)
7 nfcv 2903 . . . . . . . . . 10 𝑥𝑧
86, 7nfss 3974 . . . . . . . . 9 𝑥(𝐹𝑤) ⊆ 𝑧
93, 8nfim 1899 . . . . . . . 8 𝑥(𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)
102, 9nfim 1899 . . . . . . 7 𝑥(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧))
1110nfal 2316 . . . . . 6 𝑥𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧))
12 nfv 1917 . . . . . 6 𝑥 𝑦𝑧
1311, 12nfim 1899 . . . . 5 𝑥(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)
1413nfal 2316 . . . 4 𝑥𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)
1514nfab 2909 . . 3 𝑥{𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
1615nfuni 4915 . 2 𝑥 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
171, 16nfcxfr 2901 1 𝑥setrecs(𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  {cab 2709  wnfc 2883  wss 3948   cuni 4908  cfv 6543  setrecscsetrecs 47718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-setrecs 47719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator