Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fveq1 | Structured version Visualization version GIF version |
Description: Equality theorem for function value. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
fveq1 | ⊢ (𝐹 = 𝐺 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 5072 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝑥 ↔ 𝐴𝐺𝑥)) | |
2 | 1 | iotabidv 6402 | . 2 ⊢ (𝐹 = 𝐺 → (℩𝑥𝐴𝐹𝑥) = (℩𝑥𝐴𝐺𝑥)) |
3 | df-fv 6426 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
4 | df-fv 6426 | . 2 ⊢ (𝐺‘𝐴) = (℩𝑥𝐴𝐺𝑥) | |
5 | 2, 3, 4 | 3eqtr4g 2804 | 1 ⊢ (𝐹 = 𝐺 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Copyright terms: Public domain | W3C validator |