![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp321 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp321 | ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp21 1206 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜑) | |
2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: dalemcnes 39607 dalempnes 39608 dalemrot 39614 dath2 39694 cdleme18d 40252 cdleme20i 40274 cdleme20j 40275 cdleme20l2 40278 cdleme20l 40279 cdleme20m 40280 cdleme20 40281 cdleme21j 40293 cdleme22eALTN 40302 cdlemk16a 40813 cdlemk12u-2N 40847 cdlemk21-2N 40848 cdlemk22 40850 cdlemk31 40853 cdlemk32 40854 cdlemk11ta 40886 cdlemk11tc 40902 |
Copyright terms: Public domain | W3C validator |