|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > simp321 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) | 
| Ref | Expression | 
|---|---|
| simp321 | ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp21 1206 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1086 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 | 
| This theorem is referenced by: dalemcnes 39653 dalempnes 39654 dalemrot 39660 dath2 39740 cdleme18d 40298 cdleme20i 40320 cdleme20j 40321 cdleme20l2 40324 cdleme20l 40325 cdleme20m 40326 cdleme20 40327 cdleme21j 40339 cdleme22eALTN 40348 cdlemk16a 40859 cdlemk12u-2N 40893 cdlemk21-2N 40894 cdlemk22 40896 cdlemk31 40899 cdlemk32 40900 cdlemk11ta 40932 cdlemk11tc 40948 | 
| Copyright terms: Public domain | W3C validator |