| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp321 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp321 | ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp21 1207 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: dalemcnes 39639 dalempnes 39640 dalemrot 39646 dath2 39726 cdleme18d 40284 cdleme20i 40306 cdleme20j 40307 cdleme20l2 40310 cdleme20l 40311 cdleme20m 40312 cdleme20 40313 cdleme21j 40325 cdleme22eALTN 40334 cdlemk16a 40845 cdlemk12u-2N 40879 cdlemk21-2N 40880 cdlemk22 40882 cdlemk31 40885 cdlemk32 40886 cdlemk11ta 40918 cdlemk11tc 40934 |
| Copyright terms: Public domain | W3C validator |