MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp321 Structured version   Visualization version   GIF version

Theorem simp321 1324
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp321 ((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜑)

Proof of Theorem simp321
StepHypRef Expression
1 simp21 1207 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜑)
213ad2ant3 1135 1 ((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  dalemcnes  39637  dalempnes  39638  dalemrot  39644  dath2  39724  cdleme18d  40282  cdleme20i  40304  cdleme20j  40305  cdleme20l2  40308  cdleme20l  40309  cdleme20m  40310  cdleme20  40311  cdleme21j  40323  cdleme22eALTN  40332  cdlemk16a  40843  cdlemk12u-2N  40877  cdlemk21-2N  40878  cdlemk22  40880  cdlemk31  40883  cdlemk32  40884  cdlemk11ta  40916  cdlemk11tc  40932
  Copyright terms: Public domain W3C validator