Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp321 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp321 | ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp21 1204 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜑) | |
2 | 1 | 3ad2ant3 1133 | 1 ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: dalemcnes 37591 dalempnes 37592 dalemrot 37598 dath2 37678 cdleme18d 38236 cdleme20i 38258 cdleme20j 38259 cdleme20l2 38262 cdleme20l 38263 cdleme20m 38264 cdleme20 38265 cdleme21j 38277 cdleme22eALTN 38286 cdlemk16a 38797 cdlemk12u-2N 38831 cdlemk21-2N 38832 cdlemk22 38834 cdlemk31 38837 cdlemk32 38838 cdlemk11ta 38870 cdlemk11tc 38886 |
Copyright terms: Public domain | W3C validator |