Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp321 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp321 | ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp21 1205 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜑) | |
2 | 1 | 3ad2ant3 1134 | 1 ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: dalemcnes 37664 dalempnes 37665 dalemrot 37671 dath2 37751 cdleme18d 38309 cdleme20i 38331 cdleme20j 38332 cdleme20l2 38335 cdleme20l 38336 cdleme20m 38337 cdleme20 38338 cdleme21j 38350 cdleme22eALTN 38359 cdlemk16a 38870 cdlemk12u-2N 38904 cdlemk21-2N 38905 cdlemk22 38907 cdlemk31 38910 cdlemk32 38911 cdlemk11ta 38943 cdlemk11tc 38959 |
Copyright terms: Public domain | W3C validator |