Proof of Theorem cdlemk32
Step | Hyp | Ref
| Expression |
1 | | cdlemk3.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
2 | | cdlemk3.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
3 | | cdlemk3.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
4 | | cdlemk3.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
5 | | cdlemk3.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
6 | | cdlemk3.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | cdlemk3.t |
. . 3
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
8 | | cdlemk3.r |
. . 3
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
9 | | cdlemk3.s |
. . 3
⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
10 | | cdlemk3.u1 |
. . 3
⊢ 𝑌 = (𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝑑)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑑)))))) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdlemk31 38837 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇) ∧ (((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝑏𝑌𝐺)‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑆‘𝑏)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
12 | | simp1 1134 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇) ∧ (((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) |
13 | | simp2l 1197 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇) ∧ (((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝐹 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇)) |
14 | | simp31l 1294 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇) ∧ (((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘𝑏) ≠ (𝑅‘𝐹)) |
15 | | simp321 1321 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇) ∧ (((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐹 ≠ ( I ↾ 𝐵)) |
16 | | simp322 1322 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇) ∧ (((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑏 ≠ ( I ↾ 𝐵)) |
17 | 15, 16 | jca 511 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇) ∧ (((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵))) |
18 | | simp33 1209 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇) ∧ (((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | cdlemk30 38835 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝑆‘𝑏)‘𝑃) = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹))))) |
20 | 12, 13, 14, 17, 18, 19 | syl113anc 1380 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇) ∧ (((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝑆‘𝑏)‘𝑃) = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹))))) |
21 | 20 | oveq1d 7270 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇) ∧ (((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (((𝑆‘𝑏)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝑏))) = (((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) ∨ (𝑅‘(𝐺 ∘ ◡𝑏)))) |
22 | 21 | oveq2d 7271 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇) ∧ (((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑆‘𝑏)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝑏)))) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
23 | 11, 22 | eqtrd 2778 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇) ∧ (((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝑏𝑌𝐺)‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |