Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalempnes Structured version   Visualization version   GIF version

Theorem dalempnes 39630
Description: Lemma for dath 39715. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalempnes.o 𝑂 = (LPlanes‘𝐾)
dalempnes.y 𝑌 = ((𝑃 𝑄) 𝑅)
Assertion
Ref Expression
dalempnes (𝜑𝑃𝑆)

Proof of Theorem dalempnes
StepHypRef Expression
1 dalema.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkelat 39603 . . 3 (𝜑𝐾 ∈ Lat)
3 dalemc.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 3dalemceb 39617 . . 3 (𝜑𝐶 ∈ (Base‘𝐾))
51, 3dalemseb 39621 . . 3 (𝜑𝑆 ∈ (Base‘𝐾))
61, 3dalemteb 39622 . . 3 (𝜑𝑇 ∈ (Base‘𝐾))
7 simp321 1324 . . . 4 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑆 𝑇))
81, 7sylbi 217 . . 3 (𝜑 → ¬ 𝐶 (𝑆 𝑇))
9 eqid 2729 . . . 4 (Base‘𝐾) = (Base‘𝐾)
10 dalemc.l . . . 4 = (le‘𝐾)
11 dalemc.j . . . 4 = (join‘𝐾)
129, 10, 11latnlej2l 18366 . . 3 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) ∧ ¬ 𝐶 (𝑆 𝑇)) → ¬ 𝐶 𝑆)
132, 4, 5, 6, 8, 12syl131anc 1385 . 2 (𝜑 → ¬ 𝐶 𝑆)
141dalemclpjs 39613 . . . . 5 (𝜑𝐶 (𝑃 𝑆))
15 oveq1 7356 . . . . . 6 (𝑃 = 𝑆 → (𝑃 𝑆) = (𝑆 𝑆))
1615breq2d 5104 . . . . 5 (𝑃 = 𝑆 → (𝐶 (𝑃 𝑆) ↔ 𝐶 (𝑆 𝑆)))
1714, 16syl5ibcom 245 . . . 4 (𝜑 → (𝑃 = 𝑆𝐶 (𝑆 𝑆)))
181dalemkehl 39602 . . . . . 6 (𝜑𝐾 ∈ HL)
191dalemsea 39608 . . . . . 6 (𝜑𝑆𝐴)
2011, 3hlatjidm 39348 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑆 𝑆) = 𝑆)
2118, 19, 20syl2anc 584 . . . . 5 (𝜑 → (𝑆 𝑆) = 𝑆)
2221breq2d 5104 . . . 4 (𝜑 → (𝐶 (𝑆 𝑆) ↔ 𝐶 𝑆))
2317, 22sylibd 239 . . 3 (𝜑 → (𝑃 = 𝑆𝐶 𝑆))
2423necon3bd 2939 . 2 (𝜑 → (¬ 𝐶 𝑆𝑃𝑆))
2513, 24mpd 15 1 (𝜑𝑃𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  Latclat 18337  Atomscatm 39242  HLchlt 39329  LPlanesclpl 39471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-lat 18338  df-ats 39246  df-atl 39277  df-cvlat 39301  df-hlat 39330
This theorem is referenced by:  dalempjsen  39632  dalem24  39676
  Copyright terms: Public domain W3C validator