![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalempnes | Structured version Visualization version GIF version |
Description: Lemma for dath 36353. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalempnes.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalempnes.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
Ref | Expression |
---|---|
dalempnes | ⊢ (𝜑 → 𝑃 ≠ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
2 | 1 | dalemkelat 36241 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) |
3 | dalemc.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 1, 3 | dalemceb 36255 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (Base‘𝐾)) |
5 | 1, 3 | dalemseb 36259 | . . 3 ⊢ (𝜑 → 𝑆 ∈ (Base‘𝐾)) |
6 | 1, 3 | dalemteb 36260 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (Base‘𝐾)) |
7 | simp321 1314 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈)))) → ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) | |
8 | 1, 7 | sylbi 218 | . . 3 ⊢ (𝜑 → ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) |
9 | eqid 2793 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
10 | dalemc.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
11 | dalemc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
12 | 9, 10, 11 | latnlej2l 17499 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) ∧ ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) → ¬ 𝐶 ≤ 𝑆) |
13 | 2, 4, 5, 6, 8, 12 | syl131anc 1374 | . 2 ⊢ (𝜑 → ¬ 𝐶 ≤ 𝑆) |
14 | 1 | dalemclpjs 36251 | . . . . 5 ⊢ (𝜑 → 𝐶 ≤ (𝑃 ∨ 𝑆)) |
15 | oveq1 7014 | . . . . . 6 ⊢ (𝑃 = 𝑆 → (𝑃 ∨ 𝑆) = (𝑆 ∨ 𝑆)) | |
16 | 15 | breq2d 4968 | . . . . 5 ⊢ (𝑃 = 𝑆 → (𝐶 ≤ (𝑃 ∨ 𝑆) ↔ 𝐶 ≤ (𝑆 ∨ 𝑆))) |
17 | 14, 16 | syl5ibcom 246 | . . . 4 ⊢ (𝜑 → (𝑃 = 𝑆 → 𝐶 ≤ (𝑆 ∨ 𝑆))) |
18 | 1 | dalemkehl 36240 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
19 | 1 | dalemsea 36246 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
20 | 11, 3 | hlatjidm 35986 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴) → (𝑆 ∨ 𝑆) = 𝑆) |
21 | 18, 19, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑆 ∨ 𝑆) = 𝑆) |
22 | 21 | breq2d 4968 | . . . 4 ⊢ (𝜑 → (𝐶 ≤ (𝑆 ∨ 𝑆) ↔ 𝐶 ≤ 𝑆)) |
23 | 17, 22 | sylibd 240 | . . 3 ⊢ (𝜑 → (𝑃 = 𝑆 → 𝐶 ≤ 𝑆)) |
24 | 23 | necon3bd 2996 | . 2 ⊢ (𝜑 → (¬ 𝐶 ≤ 𝑆 → 𝑃 ≠ 𝑆)) |
25 | 13, 24 | mpd 15 | 1 ⊢ (𝜑 → 𝑃 ≠ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1078 = wceq 1520 ∈ wcel 2079 ≠ wne 2982 class class class wbr 4956 ‘cfv 6217 (class class class)co 7007 Basecbs 16300 lecple 16389 joincjn 17371 Latclat 17472 Atomscatm 35880 HLchlt 35967 LPlanesclpl 36109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-reu 3110 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-proset 17355 df-poset 17373 df-lub 17401 df-glb 17402 df-join 17403 df-meet 17404 df-lat 17473 df-ats 35884 df-atl 35915 df-cvlat 35939 df-hlat 35968 |
This theorem is referenced by: dalempjsen 36270 dalem24 36314 |
Copyright terms: Public domain | W3C validator |