| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalempnes | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39703. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
| Ref | Expression |
|---|---|
| dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
| dalemc.l | ⊢ ≤ = (le‘𝐾) |
| dalemc.j | ⊢ ∨ = (join‘𝐾) |
| dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dalempnes.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
| dalempnes.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
| Ref | Expression |
|---|---|
| dalempnes | ⊢ (𝜑 → 𝑃 ≠ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 2 | 1 | dalemkelat 39591 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) |
| 3 | dalemc.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 1, 3 | dalemceb 39605 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (Base‘𝐾)) |
| 5 | 1, 3 | dalemseb 39609 | . . 3 ⊢ (𝜑 → 𝑆 ∈ (Base‘𝐾)) |
| 6 | 1, 3 | dalemteb 39610 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (Base‘𝐾)) |
| 7 | simp321 1324 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈)))) → ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) | |
| 8 | 1, 7 | sylbi 217 | . . 3 ⊢ (𝜑 → ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) |
| 9 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 10 | dalemc.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 11 | dalemc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 12 | 9, 10, 11 | latnlej2l 18395 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) ∧ ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) → ¬ 𝐶 ≤ 𝑆) |
| 13 | 2, 4, 5, 6, 8, 12 | syl131anc 1385 | . 2 ⊢ (𝜑 → ¬ 𝐶 ≤ 𝑆) |
| 14 | 1 | dalemclpjs 39601 | . . . . 5 ⊢ (𝜑 → 𝐶 ≤ (𝑃 ∨ 𝑆)) |
| 15 | oveq1 7376 | . . . . . 6 ⊢ (𝑃 = 𝑆 → (𝑃 ∨ 𝑆) = (𝑆 ∨ 𝑆)) | |
| 16 | 15 | breq2d 5114 | . . . . 5 ⊢ (𝑃 = 𝑆 → (𝐶 ≤ (𝑃 ∨ 𝑆) ↔ 𝐶 ≤ (𝑆 ∨ 𝑆))) |
| 17 | 14, 16 | syl5ibcom 245 | . . . 4 ⊢ (𝜑 → (𝑃 = 𝑆 → 𝐶 ≤ (𝑆 ∨ 𝑆))) |
| 18 | 1 | dalemkehl 39590 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 19 | 1 | dalemsea 39596 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
| 20 | 11, 3 | hlatjidm 39335 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴) → (𝑆 ∨ 𝑆) = 𝑆) |
| 21 | 18, 19, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑆 ∨ 𝑆) = 𝑆) |
| 22 | 21 | breq2d 5114 | . . . 4 ⊢ (𝜑 → (𝐶 ≤ (𝑆 ∨ 𝑆) ↔ 𝐶 ≤ 𝑆)) |
| 23 | 17, 22 | sylibd 239 | . . 3 ⊢ (𝜑 → (𝑃 = 𝑆 → 𝐶 ≤ 𝑆)) |
| 24 | 23 | necon3bd 2939 | . 2 ⊢ (𝜑 → (¬ 𝐶 ≤ 𝑆 → 𝑃 ≠ 𝑆)) |
| 25 | 13, 24 | mpd 15 | 1 ⊢ (𝜑 → 𝑃 ≠ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 lecple 17203 joincjn 18248 Latclat 18366 Atomscatm 39229 HLchlt 39316 LPlanesclpl 39459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-proset 18231 df-poset 18250 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-lat 18367 df-ats 39233 df-atl 39264 df-cvlat 39288 df-hlat 39317 |
| This theorem is referenced by: dalempjsen 39620 dalem24 39664 |
| Copyright terms: Public domain | W3C validator |