Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalempnes Structured version   Visualization version   GIF version

Theorem dalempnes 38825
Description: Lemma for dath 38910. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))
dalemc.l ≀ = (leβ€˜πΎ)
dalemc.j ∨ = (joinβ€˜πΎ)
dalemc.a 𝐴 = (Atomsβ€˜πΎ)
dalempnes.o 𝑂 = (LPlanesβ€˜πΎ)
dalempnes.y π‘Œ = ((𝑃 ∨ 𝑄) ∨ 𝑅)
Assertion
Ref Expression
dalempnes (πœ‘ β†’ 𝑃 β‰  𝑆)

Proof of Theorem dalempnes
StepHypRef Expression
1 dalema.ph . . . 4 (πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))
21dalemkelat 38798 . . 3 (πœ‘ β†’ 𝐾 ∈ Lat)
3 dalemc.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
41, 3dalemceb 38812 . . 3 (πœ‘ β†’ 𝐢 ∈ (Baseβ€˜πΎ))
51, 3dalemseb 38816 . . 3 (πœ‘ β†’ 𝑆 ∈ (Baseβ€˜πΎ))
61, 3dalemteb 38817 . . 3 (πœ‘ β†’ 𝑇 ∈ (Baseβ€˜πΎ))
7 simp321 1323 . . . 4 ((((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))) β†’ Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇))
81, 7sylbi 216 . . 3 (πœ‘ β†’ Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇))
9 eqid 2732 . . . 4 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
10 dalemc.l . . . 4 ≀ = (leβ€˜πΎ)
11 dalemc.j . . . 4 ∨ = (joinβ€˜πΎ)
129, 10, 11latnlej2l 18417 . . 3 ((𝐾 ∈ Lat ∧ (𝐢 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ) ∧ 𝑇 ∈ (Baseβ€˜πΎ)) ∧ Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇)) β†’ Β¬ 𝐢 ≀ 𝑆)
132, 4, 5, 6, 8, 12syl131anc 1383 . 2 (πœ‘ β†’ Β¬ 𝐢 ≀ 𝑆)
141dalemclpjs 38808 . . . . 5 (πœ‘ β†’ 𝐢 ≀ (𝑃 ∨ 𝑆))
15 oveq1 7418 . . . . . 6 (𝑃 = 𝑆 β†’ (𝑃 ∨ 𝑆) = (𝑆 ∨ 𝑆))
1615breq2d 5160 . . . . 5 (𝑃 = 𝑆 β†’ (𝐢 ≀ (𝑃 ∨ 𝑆) ↔ 𝐢 ≀ (𝑆 ∨ 𝑆)))
1714, 16syl5ibcom 244 . . . 4 (πœ‘ β†’ (𝑃 = 𝑆 β†’ 𝐢 ≀ (𝑆 ∨ 𝑆)))
181dalemkehl 38797 . . . . . 6 (πœ‘ β†’ 𝐾 ∈ HL)
191dalemsea 38803 . . . . . 6 (πœ‘ β†’ 𝑆 ∈ 𝐴)
2011, 3hlatjidm 38542 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴) β†’ (𝑆 ∨ 𝑆) = 𝑆)
2118, 19, 20syl2anc 584 . . . . 5 (πœ‘ β†’ (𝑆 ∨ 𝑆) = 𝑆)
2221breq2d 5160 . . . 4 (πœ‘ β†’ (𝐢 ≀ (𝑆 ∨ 𝑆) ↔ 𝐢 ≀ 𝑆))
2317, 22sylibd 238 . . 3 (πœ‘ β†’ (𝑃 = 𝑆 β†’ 𝐢 ≀ 𝑆))
2423necon3bd 2954 . 2 (πœ‘ β†’ (Β¬ 𝐢 ≀ 𝑆 β†’ 𝑃 β‰  𝑆))
2513, 24mpd 15 1 (πœ‘ β†’ 𝑃 β‰  𝑆)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7411  Basecbs 17148  lecple 17208  joincjn 18268  Latclat 18388  Atomscatm 38436  HLchlt 38523  LPlanesclpl 38666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-proset 18252  df-poset 18270  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-lat 18389  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524
This theorem is referenced by:  dalempjsen  38827  dalem24  38871
  Copyright terms: Public domain W3C validator