MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp313 Structured version   Visualization version   GIF version

Theorem simp313 1323
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp313 ((𝜂𝜁 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜒)

Proof of Theorem simp313
StepHypRef Expression
1 simp13 1206 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜒)
213ad2ant3 1135 1 ((𝜂𝜁 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  dalemrot  39651  dalem5  39661  dalem-cly  39665  dath2  39731  cdleme26e  40353  cdleme38m  40457  cdleme38n  40458  cdlemg28b  40697  cdlemg28  40698  cdlemk7  40842  cdlemk11  40843  cdlemk12  40844  cdlemk7u  40864  cdlemk11u  40865  cdlemk12u  40866  cdlemk22  40887  cdlemk23-3  40896  cdlemk25-3  40898
  Copyright terms: Public domain W3C validator