MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp313 Structured version   Visualization version   GIF version

Theorem simp313 1320
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp313 ((𝜂𝜁 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜒)

Proof of Theorem simp313
StepHypRef Expression
1 simp13 1203 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜒)
213ad2ant3 1133 1 ((𝜂𝜁 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  dalemrot  37598  dalem5  37608  dalem-cly  37612  dath2  37678  cdleme26e  38300  cdleme38m  38404  cdleme38n  38405  cdlemg28b  38644  cdlemg28  38645  cdlemk7  38789  cdlemk11  38790  cdlemk12  38791  cdlemk7u  38811  cdlemk11u  38812  cdlemk12u  38813  cdlemk22  38834  cdlemk23-3  38843  cdlemk25-3  38845
  Copyright terms: Public domain W3C validator