MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp313 Structured version   Visualization version   GIF version

Theorem simp313 1321
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp313 ((𝜂𝜁 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜒)

Proof of Theorem simp313
StepHypRef Expression
1 simp13 1204 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜒)
213ad2ant3 1134 1 ((𝜂𝜁 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1088
This theorem is referenced by:  dalemrot  38992  dalem5  39002  dalem-cly  39006  dath2  39072  cdleme26e  39694  cdleme38m  39798  cdleme38n  39799  cdlemg28b  40038  cdlemg28  40039  cdlemk7  40183  cdlemk11  40184  cdlemk12  40185  cdlemk7u  40205  cdlemk11u  40206  cdlemk12u  40207  cdlemk22  40228  cdlemk23-3  40237  cdlemk25-3  40239
  Copyright terms: Public domain W3C validator