![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp313 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp313 | ⊢ ((𝜂 ∧ 𝜁 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp13 1204 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜒) | |
2 | 1 | 3ad2ant3 1134 | 1 ⊢ ((𝜂 ∧ 𝜁 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1088 |
This theorem is referenced by: dalemrot 38992 dalem5 39002 dalem-cly 39006 dath2 39072 cdleme26e 39694 cdleme38m 39798 cdleme38n 39799 cdlemg28b 40038 cdlemg28 40039 cdlemk7 40183 cdlemk11 40184 cdlemk12 40185 cdlemk7u 40205 cdlemk11u 40206 cdlemk12u 40207 cdlemk22 40228 cdlemk23-3 40237 cdlemk25-3 40239 |
Copyright terms: Public domain | W3C validator |