Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp313 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp313 | ⊢ ((𝜂 ∧ 𝜁 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp13 1203 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜒) | |
2 | 1 | 3ad2ant3 1133 | 1 ⊢ ((𝜂 ∧ 𝜁 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: dalemrot 37598 dalem5 37608 dalem-cly 37612 dath2 37678 cdleme26e 38300 cdleme38m 38404 cdleme38n 38405 cdlemg28b 38644 cdlemg28 38645 cdlemk7 38789 cdlemk11 38790 cdlemk12 38791 cdlemk7u 38811 cdlemk11u 38812 cdlemk12u 38813 cdlemk22 38834 cdlemk23-3 38843 cdlemk25-3 38845 |
Copyright terms: Public domain | W3C validator |