MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r2 Structured version   Visualization version   GIF version

Theorem simp3r2 1283
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r2 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simp3r2
StepHypRef Expression
1 simpr2 1196 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant3 1135 1 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  nllyrest  23422  cdlemblem  39758  cdleme21  40302  cdleme22b  40306  cdleme40m  40432  cdlemg34  40677  cdlemk5u  40826  cdlemk6u  40827  cdlemk21N  40838  cdlemk20  40839  cdlemk26b-3  40870  cdlemk26-3  40871  cdlemk28-3  40873  cdlemky  40891  cdlemk11t  40911  cdlemkyyN  40927  stoweidlem56  46033
  Copyright terms: Public domain W3C validator