MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r2 Structured version   Visualization version   GIF version

Theorem simp3r2 1283
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r2 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simp3r2
StepHypRef Expression
1 simpr2 1196 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant3 1136 1 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090
This theorem is referenced by:  nllyrest  22990  cdlemblem  38664  cdleme21  39208  cdleme22b  39212  cdleme40m  39338  cdlemg34  39583  cdlemk5u  39732  cdlemk6u  39733  cdlemk21N  39744  cdlemk20  39745  cdlemk26b-3  39776  cdlemk26-3  39777  cdlemk28-3  39779  cdlemky  39797  cdlemk11t  39817  cdlemkyyN  39833  stoweidlem56  44772
  Copyright terms: Public domain W3C validator