MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r2 Structured version   Visualization version   GIF version

Theorem simp3r2 1283
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r2 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simp3r2
StepHypRef Expression
1 simpr2 1196 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant3 1135 1 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  nllyrest  23424  cdlemblem  39812  cdleme21  40356  cdleme22b  40360  cdleme40m  40486  cdlemg34  40731  cdlemk5u  40880  cdlemk6u  40881  cdlemk21N  40892  cdlemk20  40893  cdlemk26b-3  40924  cdlemk26-3  40925  cdlemk28-3  40927  cdlemky  40945  cdlemk11t  40965  cdlemkyyN  40981  stoweidlem56  46085
  Copyright terms: Public domain W3C validator