Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r2 Structured version   Visualization version   GIF version

Theorem simp3r2 1279
 Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r2 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simp3r2
StepHypRef Expression
1 simpr2 1192 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant3 1132 1 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086 This theorem is referenced by:  nllyrest  22100  cdlemblem  37061  cdleme21  37605  cdleme22b  37609  cdleme40m  37735  cdlemg34  37980  cdlemk5u  38129  cdlemk6u  38130  cdlemk21N  38141  cdlemk20  38142  cdlemk26b-3  38173  cdlemk26-3  38174  cdlemk28-3  38176  cdlemky  38194  cdlemk11t  38214  cdlemkyyN  38230  stoweidlem56  42651
 Copyright terms: Public domain W3C validator