MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r2 Structured version   Visualization version   GIF version

Theorem simp3r2 1283
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r2 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simp3r2
StepHypRef Expression
1 simpr2 1196 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant3 1135 1 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  nllyrest  23380  cdlemblem  39794  cdleme21  40338  cdleme22b  40342  cdleme40m  40468  cdlemg34  40713  cdlemk5u  40862  cdlemk6u  40863  cdlemk21N  40874  cdlemk20  40875  cdlemk26b-3  40906  cdlemk26-3  40907  cdlemk28-3  40909  cdlemky  40927  cdlemk11t  40947  cdlemkyyN  40963  stoweidlem56  46061
  Copyright terms: Public domain W3C validator