MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r2 Structured version   Visualization version   GIF version

Theorem simp3r2 1280
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r2 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simp3r2
StepHypRef Expression
1 simpr2 1193 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant3 1133 1 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  nllyrest  22618  cdlemblem  37786  cdleme21  38330  cdleme22b  38334  cdleme40m  38460  cdlemg34  38705  cdlemk5u  38854  cdlemk6u  38855  cdlemk21N  38866  cdlemk20  38867  cdlemk26b-3  38898  cdlemk26-3  38899  cdlemk28-3  38901  cdlemky  38919  cdlemk11t  38939  cdlemkyyN  38955  stoweidlem56  43551
  Copyright terms: Public domain W3C validator