Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk26b-3 Structured version   Visualization version   GIF version

Theorem cdlemk26b-3 38028
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 14-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b 𝐵 = (Base‘𝐾)
cdlemk3.l = (le‘𝐾)
cdlemk3.j = (join‘𝐾)
cdlemk3.m = (meet‘𝐾)
cdlemk3.a 𝐴 = (Atoms‘𝐾)
cdlemk3.h 𝐻 = (LHyp‘𝐾)
cdlemk3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk3.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk3.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk3.u1 𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
Assertion
Ref Expression
cdlemk26b-3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑥𝑇 ((𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)) ∧ (𝑥𝑌𝐺) ∈ 𝑇))
Distinct variable groups:   𝑒,𝑑,𝑓,𝑖,   ,𝑖   ,𝑑,𝑒,𝑓,𝑖   𝐴,𝑖   𝑗,𝑑,𝑒,𝑓,𝑖,𝐹   𝐺,𝑑,𝑒,𝑗   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑑,𝑒,𝑓,𝑖   𝑅,𝑑,𝑒,𝑓,𝑖   𝑇,𝑑,𝑒,𝑓,𝑖   𝑊,𝑑,𝑒,𝑓,𝑖   ,𝑗   ,𝑗   ,𝑗   𝐴,𝑗   𝑗,𝐹   𝑗,𝐻   𝑗,𝐾   𝑗,𝑁   𝑃,𝑗   𝑅,𝑗   𝑆,𝑑,𝑒,𝑗   𝑇,𝑗   𝑗,𝑊   𝐹,𝑑,𝑒   ,𝑒   𝑓,𝐺,𝑖   𝑥,𝑑,𝑒,𝑓,𝑖,𝑗   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   𝑥,𝐾   𝑥,𝑁   𝑥,𝑃   𝑥,𝑅   𝑥,𝑇   𝑥,𝑌   𝑥,𝑊
Allowed substitution hints:   𝐴(𝑒,𝑓,𝑑)   𝐵(𝑒,𝑓,𝑖,𝑗,𝑑)   𝑆(𝑥,𝑓,𝑖)   𝐻(𝑒,𝑓,𝑑)   (𝑥)   𝐾(𝑒,𝑓,𝑑)   (𝑓,𝑑)   (𝑥)   𝑁(𝑒,𝑑)   𝑌(𝑒,𝑓,𝑖,𝑗,𝑑)

Proof of Theorem cdlemk26b-3
StepHypRef Expression
1 simpl1 1185 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 cdlemk3.b . . . 4 𝐵 = (Base‘𝐾)
3 cdlemk3.h . . . 4 𝐻 = (LHyp‘𝐾)
4 cdlemk3.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 cdlemk3.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
62, 3, 4, 5cdlemftr2 37689 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑥𝑇 (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))
71, 6syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑥𝑇 (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))
8 simp3r 1196 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑥𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))) → (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))
9 simp11 1197 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑥𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 simp133 1304 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑥𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))) → (𝑅𝐹) = (𝑅𝑁))
11 simp131 1302 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑥𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))) → 𝐺𝑇)
12 simp121 1299 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑥𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))) → 𝐹𝑇)
13 simp3l 1195 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑥𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))) → 𝑥𝑇)
14 simp123 1301 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑥𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))) → 𝑁𝑇)
15 simp3r2 1276 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑥𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))) → (𝑅𝑥) ≠ (𝑅𝐹))
16 simp3r3 1277 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑥𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))) → (𝑅𝑥) ≠ (𝑅𝐺))
1715, 16jca 514 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑥𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))) → ((𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))
18 simp122 1300 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑥𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))) → 𝐹 ≠ ( I ↾ 𝐵))
19 simp132 1303 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑥𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))) → 𝐺 ≠ ( I ↾ 𝐵))
20 simp3r1 1275 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑥𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))) → 𝑥 ≠ ( I ↾ 𝐵))
2118, 19, 203jca 1122 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑥𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵)))
22 simp2 1131 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑥𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
23 cdlemk3.l . . . . . . . 8 = (le‘𝐾)
24 cdlemk3.j . . . . . . . 8 = (join‘𝐾)
25 cdlemk3.m . . . . . . . 8 = (meet‘𝐾)
26 cdlemk3.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
27 cdlemk3.s . . . . . . . 8 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
28 cdlemk3.u1 . . . . . . . 8 𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
292, 23, 24, 25, 26, 3, 4, 5, 27, 28cdlemkuel-3 38021 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝑥𝑇𝑁𝑇) ∧ (((𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑥𝑌𝐺) ∈ 𝑇)
309, 10, 11, 12, 13, 14, 17, 21, 22, 29syl333anc 1396 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑥𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))) → (𝑥𝑌𝐺) ∈ 𝑇)
318, 30jca 514 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑥𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)))) → ((𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)) ∧ (𝑥𝑌𝐺) ∈ 𝑇))
32313expia 1115 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑥𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺))) → ((𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)) ∧ (𝑥𝑌𝐺) ∈ 𝑇)))
3332expd 418 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑥𝑇 → ((𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)) → ((𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)) ∧ (𝑥𝑌𝐺) ∈ 𝑇))))
3433reximdvai 3270 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (∃𝑥𝑇 (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)) → ∃𝑥𝑇 ((𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)) ∧ (𝑥𝑌𝐺) ∈ 𝑇)))
357, 34mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑥𝑇 ((𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)) ∧ (𝑥𝑌𝐺) ∈ 𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1081   = wceq 1530  wcel 2107  wne 3014  wrex 3137   class class class wbr 5057  cmpt 5137   I cid 5452  ccnv 5547  cres 5550  ccom 5552  cfv 6348  crio 7105  (class class class)co 7148  cmpo 7150  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  Atomscatm 36386  HLchlt 36473  LHypclh 37107  LTrncltrn 37224  trLctrl 37281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-riotaBAD 36076
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-undef 7931  df-map 8400  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36299  df-ol 36301  df-oml 36302  df-covers 36389  df-ats 36390  df-atl 36421  df-cvlat 36445  df-hlat 36474  df-llines 36621  df-lplanes 36622  df-lvols 36623  df-lines 36624  df-psubsp 36626  df-pmap 36627  df-padd 36919  df-lhyp 37111  df-laut 37112  df-ldil 37227  df-ltrn 37228  df-trl 37282
This theorem is referenced by:  cdlemk28-3  38031
  Copyright terms: Public domain W3C validator