Proof of Theorem cdlemk26b-3
Step | Hyp | Ref
| Expression |
1 | | simpl1 1189 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | cdlemk3.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
3 | | cdlemk3.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
4 | | cdlemk3.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
5 | | cdlemk3.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
6 | 2, 3, 4, 5 | cdlemftr2 38507 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑥 ∈ 𝑇 (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺))) |
7 | 1, 6 | syl 17 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ∃𝑥 ∈ 𝑇 (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺))) |
8 | | simp3r 1200 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑥 ∈ 𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)))) → (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺))) |
9 | | simp11 1201 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑥 ∈ 𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
10 | | simp133 1308 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑥 ∈ 𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)))) → (𝑅‘𝐹) = (𝑅‘𝑁)) |
11 | | simp131 1306 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑥 ∈ 𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)))) → 𝐺 ∈ 𝑇) |
12 | | simp121 1303 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑥 ∈ 𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)))) → 𝐹 ∈ 𝑇) |
13 | | simp3l 1199 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑥 ∈ 𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)))) → 𝑥 ∈ 𝑇) |
14 | | simp123 1305 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑥 ∈ 𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)))) → 𝑁 ∈ 𝑇) |
15 | | simp3r2 1280 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑥 ∈ 𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)))) → (𝑅‘𝑥) ≠ (𝑅‘𝐹)) |
16 | | simp3r3 1281 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑥 ∈ 𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)))) → (𝑅‘𝑥) ≠ (𝑅‘𝐺)) |
17 | 15, 16 | jca 511 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑥 ∈ 𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)))) → ((𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺))) |
18 | | simp122 1304 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑥 ∈ 𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)))) → 𝐹 ≠ ( I ↾ 𝐵)) |
19 | | simp132 1307 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑥 ∈ 𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)))) → 𝐺 ≠ ( I ↾ 𝐵)) |
20 | | simp3r1 1279 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑥 ∈ 𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)))) → 𝑥 ≠ ( I ↾ 𝐵)) |
21 | 18, 19, 20 | 3jca 1126 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑥 ∈ 𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) |
22 | | simp2 1135 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑥 ∈ 𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
23 | | cdlemk3.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
24 | | cdlemk3.j |
. . . . . . . 8
⊢ ∨ =
(join‘𝐾) |
25 | | cdlemk3.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
26 | | cdlemk3.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
27 | | cdlemk3.s |
. . . . . . . 8
⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
28 | | cdlemk3.u1 |
. . . . . . . 8
⊢ 𝑌 = (𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝑑)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑑)))))) |
29 | 2, 23, 24, 25, 26, 3, 4, 5, 27,
28 | cdlemkuel-3 38839 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑥𝑌𝐺) ∈ 𝑇) |
30 | 9, 10, 11, 12, 13, 14, 17, 21, 22, 29 | syl333anc 1400 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑥 ∈ 𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)))) → (𝑥𝑌𝐺) ∈ 𝑇) |
31 | 8, 30 | jca 511 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑥 ∈ 𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)))) → ((𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)) ∧ (𝑥𝑌𝐺) ∈ 𝑇)) |
32 | 31 | 3expia 1119 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑥 ∈ 𝑇 ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺))) → ((𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)) ∧ (𝑥𝑌𝐺) ∈ 𝑇))) |
33 | 32 | expd 415 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑥 ∈ 𝑇 → ((𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)) → ((𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)) ∧ (𝑥𝑌𝐺) ∈ 𝑇)))) |
34 | 33 | reximdvai 3199 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (∃𝑥 ∈ 𝑇 (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)) → ∃𝑥 ∈ 𝑇 ((𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)) ∧ (𝑥𝑌𝐺) ∈ 𝑇))) |
35 | 7, 34 | mpd 15 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ∃𝑥 ∈ 𝑇 ((𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐺)) ∧ (𝑥𝑌𝐺) ∈ 𝑇)) |