MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyrest Structured version   Visualization version   GIF version

Theorem nllyrest 23373
Description: An open subspace of an n-locally 𝐴 space is also n-locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyrest ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ 𝑛-Locally 𝐴)

Proof of Theorem nllyrest
Dummy variables 𝑠 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 23360 . . 3 (𝐽 ∈ 𝑛-Locally 𝐴𝐽 ∈ Top)
2 resttop 23047 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝐽t 𝐵) ∈ Top)
31, 2sylan 580 . 2 ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ Top)
4 restopn2 23064 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) ↔ (𝑥𝐽𝑥𝐵)))
51, 4sylan 580 . . . 4 ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) ↔ (𝑥𝐽𝑥𝐵)))
6 simp1l 1198 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝐽 ∈ 𝑛-Locally 𝐴)
7 simp2l 1200 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝑥𝐽)
8 simp3 1138 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝑦𝑥)
9 nlly2i 23363 . . . . . . . . 9 ((𝐽 ∈ 𝑛-Locally 𝐴𝑥𝐽𝑦𝑥) → ∃𝑠 ∈ 𝒫 𝑥𝑢𝐽 (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
106, 7, 8, 9syl3anc 1373 . . . . . . . 8 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ∃𝑠 ∈ 𝒫 𝑥𝑢𝐽 (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
1133ad2ant1 1133 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → (𝐽t 𝐵) ∈ Top)
12113ad2ant1 1133 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝐽t 𝐵) ∈ Top)
13 simp3l 1202 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑢𝐽)
14 simp3r2 1283 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑢𝑠)
15 simp2 1137 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 ∈ 𝒫 𝑥)
1615elpwid 4572 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠𝑥)
17 simp12r 1288 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑥𝐵)
1816, 17sstrd 3957 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠𝐵)
1914, 18sstrd 3957 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑢𝐵)
2063ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐽 ∈ 𝑛-Locally 𝐴)
2120, 1syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐽 ∈ Top)
22 simp11r 1286 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐵𝐽)
23 restopn2 23064 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑢 ∈ (𝐽t 𝐵) ↔ (𝑢𝐽𝑢𝐵)))
2421, 22, 23syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝑢 ∈ (𝐽t 𝐵) ↔ (𝑢𝐽𝑢𝐵)))
2513, 19, 24mpbir2and 713 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑢 ∈ (𝐽t 𝐵))
26 simp3r1 1282 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑦𝑢)
27 opnneip 23006 . . . . . . . . . . . . . . . 16 (((𝐽t 𝐵) ∈ Top ∧ 𝑢 ∈ (𝐽t 𝐵) ∧ 𝑦𝑢) → 𝑢 ∈ ((nei‘(𝐽t 𝐵))‘{𝑦}))
2812, 25, 26, 27syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑢 ∈ ((nei‘(𝐽t 𝐵))‘{𝑦}))
29 elssuni 4901 . . . . . . . . . . . . . . . . . 18 (𝐵𝐽𝐵 𝐽)
3022, 29syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐵 𝐽)
31 eqid 2729 . . . . . . . . . . . . . . . . . 18 𝐽 = 𝐽
3231restuni 23049 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝐵 𝐽) → 𝐵 = (𝐽t 𝐵))
3321, 30, 32syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐵 = (𝐽t 𝐵))
3418, 33sseqtrd 3983 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 (𝐽t 𝐵))
35 eqid 2729 . . . . . . . . . . . . . . . 16 (𝐽t 𝐵) = (𝐽t 𝐵)
3635ssnei2 23003 . . . . . . . . . . . . . . 15 ((((𝐽t 𝐵) ∈ Top ∧ 𝑢 ∈ ((nei‘(𝐽t 𝐵))‘{𝑦})) ∧ (𝑢𝑠𝑠 (𝐽t 𝐵))) → 𝑠 ∈ ((nei‘(𝐽t 𝐵))‘{𝑦}))
3712, 28, 14, 34, 36syl22anc 838 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 ∈ ((nei‘(𝐽t 𝐵))‘{𝑦}))
3837, 15elind 4163 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥))
39 restabs 23052 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝑠𝐵𝐵𝐽) → ((𝐽t 𝐵) ↾t 𝑠) = (𝐽t 𝑠))
4021, 18, 22, 39syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → ((𝐽t 𝐵) ↾t 𝑠) = (𝐽t 𝑠))
41 simp3r3 1284 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝐽t 𝑠) ∈ 𝐴)
4240, 41eqeltrd 2828 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → ((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)
4338, 42jca 511 . . . . . . . . . . . 12 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥) ∧ ((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴))
44433expa 1118 . . . . . . . . . . 11 (((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥) ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥) ∧ ((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴))
4544rexlimdvaa 3135 . . . . . . . . . 10 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥) → (∃𝑢𝐽 (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴) → (𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥) ∧ ((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)))
4645expimpd 453 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ((𝑠 ∈ 𝒫 𝑥 ∧ ∃𝑢𝐽 (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴)) → (𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥) ∧ ((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)))
4746reximdv2 3143 . . . . . . . 8 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → (∃𝑠 ∈ 𝒫 𝑥𝑢𝐽 (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴) → ∃𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴))
4810, 47mpd 15 . . . . . . 7 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ∃𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)
49483expa 1118 . . . . . 6 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵)) ∧ 𝑦𝑥) → ∃𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)
5049ralrimiva 3125 . . . . 5 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵)) → ∀𝑦𝑥𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)
5150ex 412 . . . 4 ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → ((𝑥𝐽𝑥𝐵) → ∀𝑦𝑥𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴))
525, 51sylbid 240 . . 3 ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) → ∀𝑦𝑥𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴))
5352ralrimiv 3124 . 2 ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → ∀𝑥 ∈ (𝐽t 𝐵)∀𝑦𝑥𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)
54 isnlly 23356 . 2 ((𝐽t 𝐵) ∈ 𝑛-Locally 𝐴 ↔ ((𝐽t 𝐵) ∈ Top ∧ ∀𝑥 ∈ (𝐽t 𝐵)∀𝑦𝑥𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴))
553, 53, 54sylanbrc 583 1 ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ 𝑛-Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3913  wss 3914  𝒫 cpw 4563  {csn 4589   cuni 4871  cfv 6511  (class class class)co 7387  t crest 17383  Topctop 22780  neicnei 22984  𝑛-Locally cnlly 23352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-en 8919  df-fin 8922  df-fi 9362  df-rest 17385  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-nei 22985  df-nlly 23354
This theorem is referenced by:  loclly  23374  nllyidm  23376
  Copyright terms: Public domain W3C validator