| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nllytop 23482 | . . 3
⊢ (𝐽 ∈ 𝑛-Locally 𝐴 → 𝐽 ∈ Top) | 
| 2 |  | resttop 23169 | . . 3
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝐽) → (𝐽 ↾t 𝐵) ∈ Top) | 
| 3 | 1, 2 | sylan 580 | . 2
⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝐽 ↾t 𝐵) ∈ Top) | 
| 4 |  | restopn2 23186 | . . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝐽) → (𝑥 ∈ (𝐽 ↾t 𝐵) ↔ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵))) | 
| 5 | 1, 4 | sylan 580 | . . . 4
⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝑥 ∈ (𝐽 ↾t 𝐵) ↔ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵))) | 
| 6 |  | simp1l 1197 | . . . . . . . . 9
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → 𝐽 ∈ 𝑛-Locally 𝐴) | 
| 7 |  | simp2l 1199 | . . . . . . . . 9
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ 𝐽) | 
| 8 |  | simp3 1138 | . . . . . . . . 9
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) | 
| 9 |  | nlly2i 23485 | . . . . . . . . 9
⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑠 ∈ 𝒫 𝑥∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴)) | 
| 10 | 6, 7, 8, 9 | syl3anc 1372 | . . . . . . . 8
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → ∃𝑠 ∈ 𝒫 𝑥∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴)) | 
| 11 | 3 | 3ad2ant1 1133 | . . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → (𝐽 ↾t 𝐵) ∈ Top) | 
| 12 | 11 | 3ad2ant1 1133 | . . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → (𝐽 ↾t 𝐵) ∈ Top) | 
| 13 |  | simp3l 1201 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝑢 ∈ 𝐽) | 
| 14 |  | simp3r2 1282 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝑢 ⊆ 𝑠) | 
| 15 |  | simp2 1137 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝑠 ∈ 𝒫 𝑥) | 
| 16 | 15 | elpwid 4608 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝑠 ⊆ 𝑥) | 
| 17 |  | simp12r 1287 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝑥 ⊆ 𝐵) | 
| 18 | 16, 17 | sstrd 3993 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝑠 ⊆ 𝐵) | 
| 19 | 14, 18 | sstrd 3993 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝑢 ⊆ 𝐵) | 
| 20 | 6 | 3ad2ant1 1133 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝐽 ∈ 𝑛-Locally 𝐴) | 
| 21 | 20, 1 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝐽 ∈ Top) | 
| 22 |  | simp11r 1285 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝐵 ∈ 𝐽) | 
| 23 |  | restopn2 23186 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝐽) → (𝑢 ∈ (𝐽 ↾t 𝐵) ↔ (𝑢 ∈ 𝐽 ∧ 𝑢 ⊆ 𝐵))) | 
| 24 | 21, 22, 23 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → (𝑢 ∈ (𝐽 ↾t 𝐵) ↔ (𝑢 ∈ 𝐽 ∧ 𝑢 ⊆ 𝐵))) | 
| 25 | 13, 19, 24 | mpbir2and 713 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝑢 ∈ (𝐽 ↾t 𝐵)) | 
| 26 |  | simp3r1 1281 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝑦 ∈ 𝑢) | 
| 27 |  | opnneip 23128 | . . . . . . . . . . . . . . . 16
⊢ (((𝐽 ↾t 𝐵) ∈ Top ∧ 𝑢 ∈ (𝐽 ↾t 𝐵) ∧ 𝑦 ∈ 𝑢) → 𝑢 ∈ ((nei‘(𝐽 ↾t 𝐵))‘{𝑦})) | 
| 28 | 12, 25, 26, 27 | syl3anc 1372 | . . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝑢 ∈ ((nei‘(𝐽 ↾t 𝐵))‘{𝑦})) | 
| 29 |  | elssuni 4936 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ 𝐽 → 𝐵 ⊆ ∪ 𝐽) | 
| 30 | 22, 29 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝐵 ⊆ ∪ 𝐽) | 
| 31 |  | eqid 2736 | . . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 32 | 31 | restuni 23171 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ ∪ 𝐽)
→ 𝐵 = ∪ (𝐽
↾t 𝐵)) | 
| 33 | 21, 30, 32 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝐵 = ∪ (𝐽 ↾t 𝐵)) | 
| 34 | 18, 33 | sseqtrd 4019 | . . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝑠 ⊆ ∪ (𝐽 ↾t 𝐵)) | 
| 35 |  | eqid 2736 | . . . . . . . . . . . . . . . 16
⊢ ∪ (𝐽
↾t 𝐵) =
∪ (𝐽 ↾t 𝐵) | 
| 36 | 35 | ssnei2 23125 | . . . . . . . . . . . . . . 15
⊢ ((((𝐽 ↾t 𝐵) ∈ Top ∧ 𝑢 ∈ ((nei‘(𝐽 ↾t 𝐵))‘{𝑦})) ∧ (𝑢 ⊆ 𝑠 ∧ 𝑠 ⊆ ∪ (𝐽 ↾t 𝐵))) → 𝑠 ∈ ((nei‘(𝐽 ↾t 𝐵))‘{𝑦})) | 
| 37 | 12, 28, 14, 34, 36 | syl22anc 838 | . . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝑠 ∈ ((nei‘(𝐽 ↾t 𝐵))‘{𝑦})) | 
| 38 | 37, 15 | elind 4199 | . . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → 𝑠 ∈ (((nei‘(𝐽 ↾t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)) | 
| 39 |  | restabs 23174 | . . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝑠 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐽) → ((𝐽 ↾t 𝐵) ↾t 𝑠) = (𝐽 ↾t 𝑠)) | 
| 40 | 21, 18, 22, 39 | syl3anc 1372 | . . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → ((𝐽 ↾t 𝐵) ↾t 𝑠) = (𝐽 ↾t 𝑠)) | 
| 41 |  | simp3r3 1283 | . . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → (𝐽 ↾t 𝑠) ∈ 𝐴) | 
| 42 | 40, 41 | eqeltrd 2840 | . . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → ((𝐽 ↾t 𝐵) ↾t 𝑠) ∈ 𝐴) | 
| 43 | 38, 42 | jca 511 | . . . . . . . . . . . 12
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → (𝑠 ∈ (((nei‘(𝐽 ↾t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥) ∧ ((𝐽 ↾t 𝐵) ↾t 𝑠) ∈ 𝐴)) | 
| 44 | 43 | 3expa 1118 | . . . . . . . . . . 11
⊢
(((((𝐽 ∈
𝑛-Locally 𝐴 ∧
𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴))) → (𝑠 ∈ (((nei‘(𝐽 ↾t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥) ∧ ((𝐽 ↾t 𝐵) ↾t 𝑠) ∈ 𝐴)) | 
| 45 | 44 | rexlimdvaa 3155 | . . . . . . . . . 10
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ 𝑠 ∈ 𝒫 𝑥) → (∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴) → (𝑠 ∈ (((nei‘(𝐽 ↾t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥) ∧ ((𝐽 ↾t 𝐵) ↾t 𝑠) ∈ 𝐴))) | 
| 46 | 45 | expimpd 453 | . . . . . . . . 9
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → ((𝑠 ∈ 𝒫 𝑥 ∧ ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴)) → (𝑠 ∈ (((nei‘(𝐽 ↾t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥) ∧ ((𝐽 ↾t 𝐵) ↾t 𝑠) ∈ 𝐴))) | 
| 47 | 46 | reximdv2 3163 | . . . . . . . 8
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → (∃𝑠 ∈ 𝒫 𝑥∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴) → ∃𝑠 ∈ (((nei‘(𝐽 ↾t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐵) ↾t 𝑠) ∈ 𝐴)) | 
| 48 | 10, 47 | mpd 15 | . . . . . . 7
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → ∃𝑠 ∈ (((nei‘(𝐽 ↾t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐵) ↾t 𝑠) ∈ 𝐴) | 
| 49 | 48 | 3expa 1118 | . . . . . 6
⊢ ((((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵)) ∧ 𝑦 ∈ 𝑥) → ∃𝑠 ∈ (((nei‘(𝐽 ↾t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐵) ↾t 𝑠) ∈ 𝐴) | 
| 50 | 49 | ralrimiva 3145 | . . . . 5
⊢ (((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵)) → ∀𝑦 ∈ 𝑥 ∃𝑠 ∈ (((nei‘(𝐽 ↾t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐵) ↾t 𝑠) ∈ 𝐴) | 
| 51 | 50 | ex 412 | . . . 4
⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → ((𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) → ∀𝑦 ∈ 𝑥 ∃𝑠 ∈ (((nei‘(𝐽 ↾t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐵) ↾t 𝑠) ∈ 𝐴)) | 
| 52 | 5, 51 | sylbid 240 | . . 3
⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝑥 ∈ (𝐽 ↾t 𝐵) → ∀𝑦 ∈ 𝑥 ∃𝑠 ∈ (((nei‘(𝐽 ↾t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐵) ↾t 𝑠) ∈ 𝐴)) | 
| 53 | 52 | ralrimiv 3144 | . 2
⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → ∀𝑥 ∈ (𝐽 ↾t 𝐵)∀𝑦 ∈ 𝑥 ∃𝑠 ∈ (((nei‘(𝐽 ↾t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐵) ↾t 𝑠) ∈ 𝐴) | 
| 54 |  | isnlly 23478 | . 2
⊢ ((𝐽 ↾t 𝐵) ∈ 𝑛-Locally 𝐴 ↔ ((𝐽 ↾t 𝐵) ∈ Top ∧ ∀𝑥 ∈ (𝐽 ↾t 𝐵)∀𝑦 ∈ 𝑥 ∃𝑠 ∈ (((nei‘(𝐽 ↾t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽 ↾t 𝐵) ↾t 𝑠) ∈ 𝐴)) | 
| 55 | 3, 53, 54 | sylanbrc 583 | 1
⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝐽 ↾t 𝐵) ∈ 𝑛-Locally 𝐴) |