MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyrest Structured version   Visualization version   GIF version

Theorem nllyrest 22637
Description: An open subspace of an n-locally 𝐴 space is also n-locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyrest ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ 𝑛-Locally 𝐴)

Proof of Theorem nllyrest
Dummy variables 𝑠 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 22624 . . 3 (𝐽 ∈ 𝑛-Locally 𝐴𝐽 ∈ Top)
2 resttop 22311 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝐽t 𝐵) ∈ Top)
31, 2sylan 580 . 2 ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ Top)
4 restopn2 22328 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) ↔ (𝑥𝐽𝑥𝐵)))
51, 4sylan 580 . . . 4 ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) ↔ (𝑥𝐽𝑥𝐵)))
6 simp1l 1196 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝐽 ∈ 𝑛-Locally 𝐴)
7 simp2l 1198 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝑥𝐽)
8 simp3 1137 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝑦𝑥)
9 nlly2i 22627 . . . . . . . . 9 ((𝐽 ∈ 𝑛-Locally 𝐴𝑥𝐽𝑦𝑥) → ∃𝑠 ∈ 𝒫 𝑥𝑢𝐽 (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
106, 7, 8, 9syl3anc 1370 . . . . . . . 8 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ∃𝑠 ∈ 𝒫 𝑥𝑢𝐽 (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
1133ad2ant1 1132 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → (𝐽t 𝐵) ∈ Top)
12113ad2ant1 1132 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝐽t 𝐵) ∈ Top)
13 simp3l 1200 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑢𝐽)
14 simp3r2 1281 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑢𝑠)
15 simp2 1136 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 ∈ 𝒫 𝑥)
1615elpwid 4544 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠𝑥)
17 simp12r 1286 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑥𝐵)
1816, 17sstrd 3931 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠𝐵)
1914, 18sstrd 3931 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑢𝐵)
2063ad2ant1 1132 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐽 ∈ 𝑛-Locally 𝐴)
2120, 1syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐽 ∈ Top)
22 simp11r 1284 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐵𝐽)
23 restopn2 22328 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑢 ∈ (𝐽t 𝐵) ↔ (𝑢𝐽𝑢𝐵)))
2421, 22, 23syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝑢 ∈ (𝐽t 𝐵) ↔ (𝑢𝐽𝑢𝐵)))
2513, 19, 24mpbir2and 710 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑢 ∈ (𝐽t 𝐵))
26 simp3r1 1280 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑦𝑢)
27 opnneip 22270 . . . . . . . . . . . . . . . 16 (((𝐽t 𝐵) ∈ Top ∧ 𝑢 ∈ (𝐽t 𝐵) ∧ 𝑦𝑢) → 𝑢 ∈ ((nei‘(𝐽t 𝐵))‘{𝑦}))
2812, 25, 26, 27syl3anc 1370 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑢 ∈ ((nei‘(𝐽t 𝐵))‘{𝑦}))
29 elssuni 4871 . . . . . . . . . . . . . . . . . 18 (𝐵𝐽𝐵 𝐽)
3022, 29syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐵 𝐽)
31 eqid 2738 . . . . . . . . . . . . . . . . . 18 𝐽 = 𝐽
3231restuni 22313 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝐵 𝐽) → 𝐵 = (𝐽t 𝐵))
3321, 30, 32syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐵 = (𝐽t 𝐵))
3418, 33sseqtrd 3961 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 (𝐽t 𝐵))
35 eqid 2738 . . . . . . . . . . . . . . . 16 (𝐽t 𝐵) = (𝐽t 𝐵)
3635ssnei2 22267 . . . . . . . . . . . . . . 15 ((((𝐽t 𝐵) ∈ Top ∧ 𝑢 ∈ ((nei‘(𝐽t 𝐵))‘{𝑦})) ∧ (𝑢𝑠𝑠 (𝐽t 𝐵))) → 𝑠 ∈ ((nei‘(𝐽t 𝐵))‘{𝑦}))
3712, 28, 14, 34, 36syl22anc 836 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 ∈ ((nei‘(𝐽t 𝐵))‘{𝑦}))
3837, 15elind 4128 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥))
39 restabs 22316 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝑠𝐵𝐵𝐽) → ((𝐽t 𝐵) ↾t 𝑠) = (𝐽t 𝑠))
4021, 18, 22, 39syl3anc 1370 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → ((𝐽t 𝐵) ↾t 𝑠) = (𝐽t 𝑠))
41 simp3r3 1282 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝐽t 𝑠) ∈ 𝐴)
4240, 41eqeltrd 2839 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → ((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)
4338, 42jca 512 . . . . . . . . . . . 12 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥 ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥) ∧ ((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴))
44433expa 1117 . . . . . . . . . . 11 (((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥) ∧ (𝑢𝐽 ∧ (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥) ∧ ((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴))
4544rexlimdvaa 3214 . . . . . . . . . 10 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ 𝑠 ∈ 𝒫 𝑥) → (∃𝑢𝐽 (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴) → (𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥) ∧ ((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)))
4645expimpd 454 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ((𝑠 ∈ 𝒫 𝑥 ∧ ∃𝑢𝐽 (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴)) → (𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥) ∧ ((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)))
4746reximdv2 3199 . . . . . . . 8 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → (∃𝑠 ∈ 𝒫 𝑥𝑢𝐽 (𝑦𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴) → ∃𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴))
4810, 47mpd 15 . . . . . . 7 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ∃𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)
49483expa 1117 . . . . . 6 ((((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵)) ∧ 𝑦𝑥) → ∃𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)
5049ralrimiva 3103 . . . . 5 (((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵)) → ∀𝑦𝑥𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)
5150ex 413 . . . 4 ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → ((𝑥𝐽𝑥𝐵) → ∀𝑦𝑥𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴))
525, 51sylbid 239 . . 3 ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) → ∀𝑦𝑥𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴))
5352ralrimiv 3102 . 2 ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → ∀𝑥 ∈ (𝐽t 𝐵)∀𝑦𝑥𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴)
54 isnlly 22620 . 2 ((𝐽t 𝐵) ∈ 𝑛-Locally 𝐴 ↔ ((𝐽t 𝐵) ∈ Top ∧ ∀𝑥 ∈ (𝐽t 𝐵)∀𝑦𝑥𝑠 ∈ (((nei‘(𝐽t 𝐵))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐵) ↾t 𝑠) ∈ 𝐴))
553, 53, 54sylanbrc 583 1 ((𝐽 ∈ 𝑛-Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ 𝑛-Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cin 3886  wss 3887  𝒫 cpw 4533  {csn 4561   cuni 4839  cfv 6433  (class class class)co 7275  t crest 17131  Topctop 22042  neicnei 22248  𝑛-Locally cnlly 22616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-en 8734  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-nei 22249  df-nlly 22618
This theorem is referenced by:  loclly  22638  nllyidm  22640
  Copyright terms: Public domain W3C validator