Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem56 Structured version   Visualization version   GIF version

Theorem stoweidlem56 46054
Description: This theorem proves Lemma 1 in [BrosowskiDeutsh] p. 90. Here 𝑍 is used to represent t0 in the paper, 𝑣 is used to represent 𝑉 in the paper, and 𝑒 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem56.1 𝑡𝑈
stoweidlem56.2 𝑡𝜑
stoweidlem56.3 𝐾 = (topGen‘ran (,))
stoweidlem56.4 (𝜑𝐽 ∈ Comp)
stoweidlem56.5 𝑇 = 𝐽
stoweidlem56.6 𝐶 = (𝐽 Cn 𝐾)
stoweidlem56.7 (𝜑𝐴𝐶)
stoweidlem56.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem56.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem56.10 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
stoweidlem56.11 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem56.12 (𝜑𝑈𝐽)
stoweidlem56.13 (𝜑𝑍𝑈)
Assertion
Ref Expression
stoweidlem56 (𝜑 → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
Distinct variable groups:   𝐴,𝑒,𝑡,𝑣,𝑥   𝜑,𝑞,𝑟,𝑔   𝑒,𝑓,𝜑,𝑦   𝑈,𝑓,𝑞,𝑟,𝑦   𝑈,𝑔,𝑒   𝑣,𝑈,𝑥   𝑡,𝑍,𝑦   𝑡,𝐾   𝑔,𝐽,𝑡   𝑇,𝑓,𝑔,𝑞,𝑟,𝑡   𝑦,𝑇   𝐴,𝑔   𝑒,𝑍,𝑣   𝑇,𝑒,𝑣,𝑥   𝑓,𝑍,𝑔,𝑞   𝑣,𝐽   𝐴,𝑓,𝑞,𝑟,𝑦   𝑒,𝑔
Allowed substitution hints:   𝜑(𝑥,𝑣,𝑡)   𝐶(𝑥,𝑦,𝑣,𝑡,𝑒,𝑓,𝑔,𝑟,𝑞)   𝑈(𝑡)   𝐽(𝑥,𝑦,𝑒,𝑓,𝑟,𝑞)   𝐾(𝑥,𝑦,𝑣,𝑒,𝑓,𝑔,𝑟,𝑞)   𝑍(𝑥,𝑟)

Proof of Theorem stoweidlem56
Dummy variables 𝑑 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem56.1 . . . . 5 𝑡𝑈
2 stoweidlem56.2 . . . . 5 𝑡𝜑
3 stoweidlem56.3 . . . . 5 𝐾 = (topGen‘ran (,))
4 stoweidlem56.4 . . . . 5 (𝜑𝐽 ∈ Comp)
5 stoweidlem56.5 . . . . 5 𝑇 = 𝐽
6 stoweidlem56.6 . . . . 5 𝐶 = (𝐽 Cn 𝐾)
7 stoweidlem56.7 . . . . 5 (𝜑𝐴𝐶)
8 stoweidlem56.8 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
9 stoweidlem56.9 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
10 stoweidlem56.10 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
11 stoweidlem56.11 . . . . 5 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
12 stoweidlem56.12 . . . . 5 (𝜑𝑈𝐽)
13 stoweidlem56.13 . . . . 5 (𝜑𝑍𝑈)
14 eqid 2729 . . . . 5 {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
15 eqid 2729 . . . . 5 {𝑤𝐽 ∣ ∃ ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} = {𝑤𝐽 ∣ ∃ ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15stoweidlem55 46053 . . . 4 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
17 df-rex 3054 . . . 4 (∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) ↔ ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
1816, 17sylib 218 . . 3 (𝜑 → ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
19 simpl 482 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → 𝜑)
20 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → 𝑝𝐴)
21 simprr3 1224 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))
22 nfv 1914 . . . . . . . . 9 𝑡 𝑝𝐴
23 nfra1 3261 . . . . . . . . 9 𝑡𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)
242, 22, 23nf3an 1901 . . . . . . . 8 𝑡(𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))
2543ad2ant1 1133 . . . . . . . 8 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → 𝐽 ∈ Comp)
267sselda 3946 . . . . . . . . . 10 ((𝜑𝑝𝐴) → 𝑝𝐶)
2726, 6eleqtrdi 2838 . . . . . . . . 9 ((𝜑𝑝𝐴) → 𝑝 ∈ (𝐽 Cn 𝐾))
28273adant3 1132 . . . . . . . 8 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → 𝑝 ∈ (𝐽 Cn 𝐾))
29 simp3 1138 . . . . . . . 8 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))
30123ad2ant1 1133 . . . . . . . 8 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → 𝑈𝐽)
311, 24, 3, 5, 25, 28, 29, 30stoweidlem28 46026 . . . . . . 7 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))
3219, 20, 21, 31syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))
33 simpr1 1195 . . . . . . . . 9 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → 𝑑 ∈ ℝ+)
34 simpr2 1196 . . . . . . . . 9 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → 𝑑 < 1)
35 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → 𝑝𝐴)
36 simprr1 1222 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1))
3736adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → ∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1))
38 simprr2 1223 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → (𝑝𝑍) = 0)
3938adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → (𝑝𝑍) = 0)
40 simpr3 1197 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))
4137, 39, 403jca 1128 . . . . . . . . . 10 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))
4235, 41jca 511 . . . . . . . . 9 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))
4333, 34, 423jca 1128 . . . . . . . 8 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))))
4443ex 412 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ((𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)) → (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))))
4544eximdv 1917 . . . . . 6 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → (∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))))
4632, 45mpd 15 . . . . 5 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))))
4746ex 412 . . . 4 (𝜑 → ((𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))))
4847eximdv 1917 . . 3 (𝜑 → (∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))) → ∃𝑝𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))))
4918, 48mpd 15 . 2 (𝜑 → ∃𝑝𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))))
50 nfv 1914 . . . . . . 7 𝑡 𝑑 ∈ ℝ+
51 nfv 1914 . . . . . . 7 𝑡 𝑑 < 1
52 nfra1 3261 . . . . . . . . 9 𝑡𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1)
53 nfv 1914 . . . . . . . . 9 𝑡(𝑝𝑍) = 0
54 nfra1 3261 . . . . . . . . 9 𝑡𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)
5552, 53, 54nf3an 1901 . . . . . . . 8 𝑡(∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))
5622, 55nfan 1899 . . . . . . 7 𝑡(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))
5750, 51, 56nf3an 1901 . . . . . 6 𝑡(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))
582, 57nfan 1899 . . . . 5 𝑡(𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))))
59 nfcv 2891 . . . . 5 𝑡𝑝
60 eqid 2729 . . . . 5 {𝑡𝑇 ∣ (𝑝𝑡) < (𝑑 / 2)} = {𝑡𝑇 ∣ (𝑝𝑡) < (𝑑 / 2)}
617adantr 480 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝐴𝐶)
6283adant1r 1178 . . . . 5 (((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
6393adant1r 1178 . . . . 5 (((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
6410adantlr 715 . . . . 5 (((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) ∧ 𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
65 simpr1 1195 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑑 ∈ ℝ+)
66 simpr2 1196 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑑 < 1)
6712adantr 480 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑈𝐽)
6813adantr 480 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑍𝑈)
69 simpr3l 1235 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑝𝐴)
70 simp3r1 1282 . . . . . 6 ((𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → ∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1))
7170adantl 481 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → ∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1))
72 simp3r2 1283 . . . . . 6 ((𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → (𝑝𝑍) = 0)
7372adantl 481 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → (𝑝𝑍) = 0)
74 simp3r3 1284 . . . . . 6 ((𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))
7574adantl 481 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))
761, 58, 59, 3, 60, 5, 6, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 75stoweidlem52 46050 . . . 4 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
7776ex 412 . . 3 (𝜑 → ((𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))))
7877exlimdvv 1934 . 2 (𝜑 → (∃𝑝𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))))
7949, 78mpd 15 1 (𝜑 → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wnfc 2876  wne 2925  wral 3044  wrex 3053  {crab 3405  cdif 3911  wss 3914   cuni 4871   class class class wbr 5107  cmpt 5188  ran crn 5639  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  2c2 12241  +crp 12951  (,)cioo 13306  topGenctg 17400   Cn ccn 23111  Compccmp 23273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-cn 23114  df-cnp 23115  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210
This theorem is referenced by:  stoweidlem57  46055
  Copyright terms: Public domain W3C validator