Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem56 Structured version   Visualization version   GIF version

Theorem stoweidlem56 43272
Description: This theorem proves Lemma 1 in [BrosowskiDeutsh] p. 90. Here 𝑍 is used to represent t0 in the paper, 𝑣 is used to represent 𝑉 in the paper, and 𝑒 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem56.1 𝑡𝑈
stoweidlem56.2 𝑡𝜑
stoweidlem56.3 𝐾 = (topGen‘ran (,))
stoweidlem56.4 (𝜑𝐽 ∈ Comp)
stoweidlem56.5 𝑇 = 𝐽
stoweidlem56.6 𝐶 = (𝐽 Cn 𝐾)
stoweidlem56.7 (𝜑𝐴𝐶)
stoweidlem56.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem56.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem56.10 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
stoweidlem56.11 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem56.12 (𝜑𝑈𝐽)
stoweidlem56.13 (𝜑𝑍𝑈)
Assertion
Ref Expression
stoweidlem56 (𝜑 → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
Distinct variable groups:   𝑒,𝑓,𝑔,𝑡,𝐴   𝑣,𝑒,𝑥,𝑡,𝐴   𝑦,𝑒,𝑓,𝑡,𝐴   𝑔,𝐽,𝑡   𝑇,𝑒,𝑓,𝑔,𝑡   𝑈,𝑒,𝑓,𝑔   𝑒,𝑍,𝑓,𝑔,𝑡   𝜑,𝑒,𝑓,𝑔   𝑓,𝑞,𝑔,𝑡,𝐴,𝑟   𝑦,𝑞,𝑇   𝑈,𝑞,𝑦   𝑍,𝑞,𝑦   𝜑,𝑞,𝑦,𝑟   𝑇,𝑟   𝑈,𝑟   𝜑,𝑟   𝑡,𝐾   𝑣,𝐽   𝑣,𝑇,𝑥   𝑣,𝑈,𝑥   𝑣,𝑍
Allowed substitution hints:   𝜑(𝑥,𝑣,𝑡)   𝐶(𝑥,𝑦,𝑣,𝑡,𝑒,𝑓,𝑔,𝑟,𝑞)   𝑈(𝑡)   𝐽(𝑥,𝑦,𝑒,𝑓,𝑟,𝑞)   𝐾(𝑥,𝑦,𝑣,𝑒,𝑓,𝑔,𝑟,𝑞)   𝑍(𝑥,𝑟)

Proof of Theorem stoweidlem56
Dummy variables 𝑑 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem56.1 . . . . 5 𝑡𝑈
2 stoweidlem56.2 . . . . 5 𝑡𝜑
3 stoweidlem56.3 . . . . 5 𝐾 = (topGen‘ran (,))
4 stoweidlem56.4 . . . . 5 (𝜑𝐽 ∈ Comp)
5 stoweidlem56.5 . . . . 5 𝑇 = 𝐽
6 stoweidlem56.6 . . . . 5 𝐶 = (𝐽 Cn 𝐾)
7 stoweidlem56.7 . . . . 5 (𝜑𝐴𝐶)
8 stoweidlem56.8 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
9 stoweidlem56.9 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
10 stoweidlem56.10 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
11 stoweidlem56.11 . . . . 5 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
12 stoweidlem56.12 . . . . 5 (𝜑𝑈𝐽)
13 stoweidlem56.13 . . . . 5 (𝜑𝑍𝑈)
14 eqid 2737 . . . . 5 {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
15 eqid 2737 . . . . 5 {𝑤𝐽 ∣ ∃ ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} = {𝑤𝐽 ∣ ∃ ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15stoweidlem55 43271 . . . 4 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
17 df-rex 3067 . . . 4 (∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) ↔ ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
1816, 17sylib 221 . . 3 (𝜑 → ∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
19 simpl 486 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → 𝜑)
20 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → 𝑝𝐴)
21 simprr3 1225 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))
22 nfv 1922 . . . . . . . . 9 𝑡 𝑝𝐴
23 nfra1 3140 . . . . . . . . 9 𝑡𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)
242, 22, 23nf3an 1909 . . . . . . . 8 𝑡(𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))
2543ad2ant1 1135 . . . . . . . 8 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → 𝐽 ∈ Comp)
267sselda 3901 . . . . . . . . . 10 ((𝜑𝑝𝐴) → 𝑝𝐶)
2726, 6eleqtrdi 2848 . . . . . . . . 9 ((𝜑𝑝𝐴) → 𝑝 ∈ (𝐽 Cn 𝐾))
28273adant3 1134 . . . . . . . 8 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → 𝑝 ∈ (𝐽 Cn 𝐾))
29 simp3 1140 . . . . . . . 8 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))
30123ad2ant1 1135 . . . . . . . 8 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → 𝑈𝐽)
311, 24, 3, 5, 25, 28, 29, 30stoweidlem28 43244 . . . . . . 7 ((𝜑𝑝𝐴 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))
3219, 20, 21, 31syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))
33 simpr1 1196 . . . . . . . . 9 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → 𝑑 ∈ ℝ+)
34 simpr2 1197 . . . . . . . . 9 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → 𝑑 < 1)
35 simplrl 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → 𝑝𝐴)
36 simprr1 1223 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1))
3736adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → ∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1))
38 simprr2 1224 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → (𝑝𝑍) = 0)
3938adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → (𝑝𝑍) = 0)
40 simpr3 1198 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))
4137, 39, 403jca 1130 . . . . . . . . . 10 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))
4235, 41jca 515 . . . . . . . . 9 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))
4333, 34, 423jca 1130 . . . . . . . 8 (((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))) → (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))))
4443ex 416 . . . . . . 7 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ((𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)) → (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))))
4544eximdv 1925 . . . . . 6 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → (∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))))
4632, 45mpd 15 . . . . 5 ((𝜑 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))))
4746ex 416 . . . 4 (𝜑 → ((𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))))
4847eximdv 1925 . . 3 (𝜑 → (∃𝑝(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))) → ∃𝑝𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))))
4918, 48mpd 15 . 2 (𝜑 → ∃𝑝𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))))
50 nfv 1922 . . . . . . 7 𝑡 𝑑 ∈ ℝ+
51 nfv 1922 . . . . . . 7 𝑡 𝑑 < 1
52 nfra1 3140 . . . . . . . . 9 𝑡𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1)
53 nfv 1922 . . . . . . . . 9 𝑡(𝑝𝑍) = 0
54 nfra1 3140 . . . . . . . . 9 𝑡𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)
5552, 53, 54nf3an 1909 . . . . . . . 8 𝑡(∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))
5622, 55nfan 1907 . . . . . . 7 𝑡(𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))
5750, 51, 56nf3an 1909 . . . . . 6 𝑡(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))
582, 57nfan 1907 . . . . 5 𝑡(𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))))
59 nfcv 2904 . . . . 5 𝑡𝑝
60 eqid 2737 . . . . 5 {𝑡𝑇 ∣ (𝑝𝑡) < (𝑑 / 2)} = {𝑡𝑇 ∣ (𝑝𝑡) < (𝑑 / 2)}
617adantr 484 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝐴𝐶)
6283adant1r 1179 . . . . 5 (((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
6393adant1r 1179 . . . . 5 (((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
6410adantlr 715 . . . . 5 (((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) ∧ 𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
65 simpr1 1196 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑑 ∈ ℝ+)
66 simpr2 1197 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑑 < 1)
6712adantr 484 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑈𝐽)
6813adantr 484 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑍𝑈)
69 simpr3l 1236 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → 𝑝𝐴)
70 simp3r1 1283 . . . . . 6 ((𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → ∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1))
7170adantl 485 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → ∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1))
72 simp3r2 1284 . . . . . 6 ((𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → (𝑝𝑍) = 0)
7372adantl 485 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → (𝑝𝑍) = 0)
74 simp3r3 1285 . . . . . 6 ((𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))
7574adantl 485 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))
761, 58, 59, 3, 60, 5, 6, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 75stoweidlem52 43268 . . . 4 ((𝜑 ∧ (𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡))))) → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
7776ex 416 . . 3 (𝜑 → ((𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))))
7877exlimdvv 1942 . 2 (𝜑 → (∃𝑝𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ (𝑝𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑝𝑡)))) → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))))
7949, 78mpd 15 1 (𝜑 → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wex 1787  wnf 1791  wcel 2110  wnfc 2884  wne 2940  wral 3061  wrex 3062  {crab 3065  cdif 3863  wss 3866   cuni 4819   class class class wbr 5053  cmpt 5135  ran crn 5552  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734   < clt 10867  cle 10868  cmin 11062   / cdiv 11489  2c2 11885  +crp 12586  (,)cioo 12935  topGenctg 16942   Cn ccn 22121  Compccmp 22283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050  df-sum 15250  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-cn 22124  df-cnp 22125  df-cmp 22284  df-tx 22459  df-hmeo 22652  df-xms 23218  df-ms 23219  df-tms 23220
This theorem is referenced by:  stoweidlem57  43273
  Copyright terms: Public domain W3C validator