Step | Hyp | Ref
| Expression |
1 | | stoweidlem56.1 |
. . . . 5
⊢
Ⅎ𝑡𝑈 |
2 | | stoweidlem56.2 |
. . . . 5
⊢
Ⅎ𝑡𝜑 |
3 | | stoweidlem56.3 |
. . . . 5
⊢ 𝐾 = (topGen‘ran
(,)) |
4 | | stoweidlem56.4 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ Comp) |
5 | | stoweidlem56.5 |
. . . . 5
⊢ 𝑇 = ∪
𝐽 |
6 | | stoweidlem56.6 |
. . . . 5
⊢ 𝐶 = (𝐽 Cn 𝐾) |
7 | | stoweidlem56.7 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
8 | | stoweidlem56.8 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
9 | | stoweidlem56.9 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
10 | | stoweidlem56.10 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑦) ∈ 𝐴) |
11 | | stoweidlem56.11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
12 | | stoweidlem56.12 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ 𝐽) |
13 | | stoweidlem56.13 |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝑈) |
14 | | eqid 2738 |
. . . . 5
⊢ {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} |
15 | | eqid 2738 |
. . . . 5
⊢ {𝑤 ∈ 𝐽 ∣ ∃ℎ ∈ {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))}𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} = {𝑤 ∈ 𝐽 ∣ ∃ℎ ∈ {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))}𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15 | stoweidlem55 43486 |
. . . 4
⊢ (𝜑 → ∃𝑝 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡))) |
17 | | df-rex 3069 |
. . . 4
⊢
(∃𝑝 ∈
𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)) ↔ ∃𝑝(𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) |
18 | 16, 17 | sylib 217 |
. . 3
⊢ (𝜑 → ∃𝑝(𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) |
19 | | simpl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) → 𝜑) |
20 | | simprl 767 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) → 𝑝 ∈ 𝐴) |
21 | | simprr3 1221 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) → ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)) |
22 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑡 𝑝 ∈ 𝐴 |
23 | | nfra1 3142 |
. . . . . . . . 9
⊢
Ⅎ𝑡∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡) |
24 | 2, 22, 23 | nf3an 1905 |
. . . . . . . 8
⊢
Ⅎ𝑡(𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)) |
25 | 4 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)) → 𝐽 ∈ Comp) |
26 | 7 | sselda 3917 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ 𝐶) |
27 | 26, 6 | eleqtrdi 2849 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ (𝐽 Cn 𝐾)) |
28 | 27 | 3adant3 1130 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)) → 𝑝 ∈ (𝐽 Cn 𝐾)) |
29 | | simp3 1136 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)) → ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)) |
30 | 12 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)) → 𝑈 ∈ 𝐽) |
31 | 1, 24, 3, 5, 25, 28, 29, 30 | stoweidlem28 43459 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))) |
32 | 19, 20, 21, 31 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))) |
33 | | simpr1 1192 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))) → 𝑑 ∈ ℝ+) |
34 | | simpr2 1193 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))) → 𝑑 < 1) |
35 | | simplrl 773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))) → 𝑝 ∈ 𝐴) |
36 | | simprr1 1219 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1)) |
37 | 36 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))) → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1)) |
38 | | simprr2 1220 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) → (𝑝‘𝑍) = 0) |
39 | 38 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))) → (𝑝‘𝑍) = 0) |
40 | | simpr3 1194 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))) → ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡)) |
41 | 37, 39, 40 | 3jca 1126 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))) → (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))) |
42 | 35, 41 | jca 511 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))) → (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡)))) |
43 | 33, 34, 42 | 3jca 1126 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))) → (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))))) |
44 | 43 | ex 412 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) → ((𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡)) → (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡)))))) |
45 | 44 | eximdv 1921 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) → (∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡)))))) |
46 | 32, 45 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)))) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))))) |
47 | 46 | ex 412 |
. . . 4
⊢ (𝜑 → ((𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡))) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡)))))) |
48 | 47 | eximdv 1921 |
. . 3
⊢ (𝜑 → (∃𝑝(𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡))) → ∃𝑝∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡)))))) |
49 | 18, 48 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑝∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))))) |
50 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑡 𝑑 ∈
ℝ+ |
51 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑡 𝑑 < 1 |
52 | | nfra1 3142 |
. . . . . . . . 9
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) |
53 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑡(𝑝‘𝑍) = 0 |
54 | | nfra1 3142 |
. . . . . . . . 9
⊢
Ⅎ𝑡∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡) |
55 | 52, 53, 54 | nf3an 1905 |
. . . . . . . 8
⊢
Ⅎ𝑡(∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡)) |
56 | 22, 55 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑡(𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))) |
57 | 50, 51, 56 | nf3an 1905 |
. . . . . 6
⊢
Ⅎ𝑡(𝑑 ∈ ℝ+
∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡)))) |
58 | 2, 57 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑡(𝜑 ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))))) |
59 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑡𝑝 |
60 | | eqid 2738 |
. . . . 5
⊢ {𝑡 ∈ 𝑇 ∣ (𝑝‘𝑡) < (𝑑 / 2)} = {𝑡 ∈ 𝑇 ∣ (𝑝‘𝑡) < (𝑑 / 2)} |
61 | 7 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))))) → 𝐴 ⊆ 𝐶) |
62 | 8 | 3adant1r 1175 |
. . . . 5
⊢ (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))))) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
63 | 9 | 3adant1r 1175 |
. . . . 5
⊢ (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))))) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
64 | 10 | adantlr 711 |
. . . . 5
⊢ (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))))) ∧ 𝑦 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑦) ∈ 𝐴) |
65 | | simpr1 1192 |
. . . . 5
⊢ ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))))) → 𝑑 ∈ ℝ+) |
66 | | simpr2 1193 |
. . . . 5
⊢ ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))))) → 𝑑 < 1) |
67 | 12 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))))) → 𝑈 ∈ 𝐽) |
68 | 13 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))))) → 𝑍 ∈ 𝑈) |
69 | | simpr3l 1232 |
. . . . 5
⊢ ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))))) → 𝑝 ∈ 𝐴) |
70 | | simp3r1 1279 |
. . . . . 6
⊢ ((𝑑 ∈ ℝ+
∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡)))) → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1)) |
71 | 70 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))))) → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1)) |
72 | | simp3r2 1280 |
. . . . . 6
⊢ ((𝑑 ∈ ℝ+
∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡)))) → (𝑝‘𝑍) = 0) |
73 | 72 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))))) → (𝑝‘𝑍) = 0) |
74 | | simp3r3 1281 |
. . . . . 6
⊢ ((𝑑 ∈ ℝ+
∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡)))) → ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡)) |
75 | 74 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))))) → ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡)) |
76 | 1, 58, 59, 3, 60, 5, 6, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 75 | stoweidlem52 43483 |
. . . 4
⊢ ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡))))) → ∃𝑣 ∈ 𝐽 ((𝑍 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑈) ∧ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑣 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡)))) |
77 | 76 | ex 412 |
. . 3
⊢ (𝜑 → ((𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡)))) → ∃𝑣 ∈ 𝐽 ((𝑍 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑈) ∧ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑣 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡))))) |
78 | 77 | exlimdvv 1938 |
. 2
⊢ (𝜑 → (∃𝑝∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ (𝑝 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑝‘𝑡)))) → ∃𝑣 ∈ 𝐽 ((𝑍 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑈) ∧ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑣 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡))))) |
79 | 49, 78 | mpd 15 |
1
⊢ (𝜑 → ∃𝑣 ∈ 𝐽 ((𝑍 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑈) ∧ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑣 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡)))) |