![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp3r1 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp3r1 | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1194 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜑) | |
2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: nllyrest 23515 segletr 36078 cdlemblem 39750 cdleme21 40294 cdleme22b 40298 cdleme40m 40424 cdlemg34 40669 cdlemk5u 40818 cdlemk6u 40819 cdlemk21N 40830 cdlemk20 40831 cdlemk26b-3 40862 cdlemk26-3 40863 cdlemk28-3 40865 cdlemk37 40871 cdlemky 40883 cdlemk11t 40903 cdlemkyyN 40919 dihmeetlem20N 41283 stoweidlem56 45977 |
Copyright terms: Public domain | W3C validator |