|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > simp3r1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) | 
| Ref | Expression | 
|---|---|
| simp3r1 | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr1 1194 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜑) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 | 
| This theorem is referenced by: nllyrest 23495 segletr 36116 cdlemblem 39796 cdleme21 40340 cdleme22b 40344 cdleme40m 40470 cdlemg34 40715 cdlemk5u 40864 cdlemk6u 40865 cdlemk21N 40876 cdlemk20 40877 cdlemk26b-3 40908 cdlemk26-3 40909 cdlemk28-3 40911 cdlemk37 40917 cdlemky 40929 cdlemk11t 40949 cdlemkyyN 40965 dihmeetlem20N 41329 stoweidlem56 46076 | 
| Copyright terms: Public domain | W3C validator |