Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp3r1 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp3r1 | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1192 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜑) | |
2 | 1 | 3ad2ant3 1133 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: nllyrest 22545 segletr 34343 cdlemblem 37734 cdleme21 38278 cdleme22b 38282 cdleme40m 38408 cdlemg34 38653 cdlemk5u 38802 cdlemk6u 38803 cdlemk21N 38814 cdlemk20 38815 cdlemk26b-3 38846 cdlemk26-3 38847 cdlemk28-3 38849 cdlemk37 38855 cdlemky 38867 cdlemk11t 38887 cdlemkyyN 38903 dihmeetlem20N 39267 stoweidlem56 43487 |
Copyright terms: Public domain | W3C validator |