MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r1 Structured version   Visualization version   GIF version

Theorem simp3r1 1281
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r1 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜑)

Proof of Theorem simp3r1
StepHypRef Expression
1 simpr1 1194 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜑)
213ad2ant3 1135 1 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  nllyrest  23495  segletr  36116  cdlemblem  39796  cdleme21  40340  cdleme22b  40344  cdleme40m  40470  cdlemg34  40715  cdlemk5u  40864  cdlemk6u  40865  cdlemk21N  40876  cdlemk20  40877  cdlemk26b-3  40908  cdlemk26-3  40909  cdlemk28-3  40911  cdlemk37  40917  cdlemky  40929  cdlemk11t  40949  cdlemkyyN  40965  dihmeetlem20N  41329  stoweidlem56  46076
  Copyright terms: Public domain W3C validator