Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkyyN Structured version   Visualization version   GIF version

Theorem cdlemkyyN 41067
Description: Part of proof of Lemma K of [Crawley] p. 118. TODO: clean up (𝑏𝑌𝐺) stuff. (Contributed by NM, 21-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
cdlemk5a.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk5a.u1 𝑉 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
Assertion
Ref Expression
cdlemkyyN (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝐺 / 𝑔𝑋𝑃) = ((𝑏𝑉𝐺)‘𝑃))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ,𝑏,𝑧   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝐺,𝑏,𝑗,𝑔,𝑧   ,𝑗   𝐴,𝑗   𝐵,𝑗   𝑗,𝐹   𝑗,𝐺   𝑗,𝐻   𝑗,𝐾   𝑗,𝑁   𝑃,𝑗   𝑅,𝑗   𝑇,𝑗   𝑗,𝑊   𝑗,𝑋   𝑒,𝑑,𝑓,𝑖,𝑗,   ,𝑖   ,𝑑,𝑒,𝑓,𝑖,𝑗   𝐴,𝑖   𝑓,𝐹,𝑖   𝐺,𝑑,𝑒   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑑,𝑒,𝑓,𝑖   𝑅,𝑑,𝑒,𝑓,𝑖,𝑏   𝑆,𝑏,𝑑,𝑒,𝑗   𝑇,𝑑,𝑒,𝑓,𝑖   𝑊,𝑑,𝑒,𝑓,𝑖,𝑏
Allowed substitution hints:   𝐴(𝑒,𝑓,𝑑)   𝐵(𝑒,𝑓,𝑖,𝑑)   𝑆(𝑧,𝑓,𝑔,𝑖)   𝐹(𝑒,𝑑)   𝐺(𝑓,𝑖)   𝐻(𝑒,𝑓,𝑑)   𝐾(𝑒,𝑓,𝑑)   (𝑒,𝑓,𝑑)   𝑁(𝑒,𝑑)   𝑉(𝑧,𝑒,𝑓,𝑔,𝑖,𝑗,𝑏,𝑑)   𝑋(𝑧,𝑒,𝑓,𝑔,𝑖,𝑏,𝑑)   𝑌(𝑒,𝑓,𝑔,𝑖,𝑗,𝑏,𝑑)   𝑍(𝑧,𝑒,𝑓,𝑖,𝑗,𝑏,𝑑)

Proof of Theorem cdlemkyyN
StepHypRef Expression
1 simp11 1204 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝐾 ∈ HL)
2 simp12 1205 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝑊𝐻)
31, 2jca 511 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp13 1206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝑅𝐹) = (𝑅𝑁))
5 simp211 1312 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝐹𝑇)
6 simp3l 1202 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝑏𝑇)
7 simp213 1314 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝑁𝑇)
8 simp3r2 1283 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝑅𝑏) ≠ (𝑅𝐹))
9 simp212 1313 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝐹 ≠ ( I ↾ 𝐵))
10 simp3r1 1282 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝑏 ≠ ( I ↾ 𝐵))
119, 10jca 511 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵)))
12 simp23 1209 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
13 cdlemk5.b . . . . . . 7 𝐵 = (Base‘𝐾)
14 cdlemk5.l . . . . . . 7 = (le‘𝐾)
15 cdlemk5.j . . . . . . 7 = (join‘𝐾)
16 cdlemk5.m . . . . . . 7 = (meet‘𝐾)
17 cdlemk5.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
18 cdlemk5.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
19 cdlemk5.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
20 cdlemk5.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
21 cdlemk5a.s . . . . . . 7 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
2213, 14, 15, 16, 17, 18, 19, 20, 21cdlemk30 40999 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝑏𝑇𝑁𝑇) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑆𝑏)‘𝑃) = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))))
233, 4, 5, 6, 7, 8, 11, 12, 22syl233anc 1401 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → ((𝑆𝑏)‘𝑃) = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))))
24 cdlemk5.z . . . . 5 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
2523, 24eqtr4di 2784 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → ((𝑆𝑏)‘𝑃) = 𝑍)
2625oveq1d 7367 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (((𝑆𝑏)‘𝑃) (𝑅‘(𝐺𝑏))) = (𝑍 (𝑅‘(𝐺𝑏))))
2726oveq2d 7368 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → ((𝑃 (𝑅𝐺)) (((𝑆𝑏)‘𝑃) (𝑅‘(𝐺𝑏)))) = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏)))))
285, 6, 73jca 1128 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝐹𝑇𝑏𝑇𝑁𝑇))
29 simp22l 1293 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝐺𝑇)
30 simp3r3 1284 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝑅𝑏) ≠ (𝑅𝐺))
318, 30jca 511 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))
32 simp22r 1294 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝐺 ≠ ( I ↾ 𝐵))
339, 10, 323jca 1128 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)))
34 cdlemk5a.u1 . . . 4 𝑉 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
3513, 14, 15, 16, 17, 18, 19, 20, 21, 34cdlemk31 41001 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝑏𝑇𝑁𝑇) ∧ 𝐺𝑇) ∧ (((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑏𝑉𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) (((𝑆𝑏)‘𝑃) (𝑅‘(𝐺𝑏)))))
363, 4, 28, 29, 31, 33, 12, 35syl223anc 1398 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → ((𝑏𝑉𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) (((𝑆𝑏)‘𝑃) (𝑅‘(𝐺𝑏)))))
375, 9jca 511 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)))
38 simp22 1208 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)))
39 simp3 1138 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺))))
40 cdlemk5.y . . . 4 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
41 cdlemk5.x . . . 4 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
4213, 14, 15, 16, 17, 18, 19, 20, 24, 40, 41cdlemk42yN 41049 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝐺 / 𝑔𝑋𝑃) = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏)))))
433, 37, 38, 7, 12, 4, 39, 42syl331anc 1397 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝐺 / 𝑔𝑋𝑃) = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏)))))
4427, 36, 433eqtr4rd 2777 1 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝐺 / 𝑔𝑋𝑃) = ((𝑏𝑉𝐺)‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  csb 3845   class class class wbr 5093  cmpt 5174   I cid 5513  ccnv 5618  cres 5621  ccom 5623  cfv 6487  crio 7308  (class class class)co 7352  cmpo 7354  Basecbs 17126  lecple 17174  joincjn 18223  meetcmee 18224  Atomscatm 39368  HLchlt 39455  LHypclh 40089  LTrncltrn 40206  trLctrl 40263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-riotaBAD 39058
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-undef 8209  df-map 8758  df-proset 18206  df-poset 18225  df-plt 18240  df-lub 18256  df-glb 18257  df-join 18258  df-meet 18259  df-p0 18335  df-p1 18336  df-lat 18344  df-clat 18411  df-oposet 39281  df-ol 39283  df-oml 39284  df-covers 39371  df-ats 39372  df-atl 39403  df-cvlat 39427  df-hlat 39456  df-llines 39603  df-lplanes 39604  df-lvols 39605  df-lines 39606  df-psubsp 39608  df-pmap 39609  df-padd 39901  df-lhyp 40093  df-laut 40094  df-ldil 40209  df-ltrn 40210  df-trl 40264
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator