MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r3 Structured version   Visualization version   GIF version

Theorem simp3r3 1281
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r3 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜒)

Proof of Theorem simp3r3
StepHypRef Expression
1 simpr3 1194 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2ant3 1133 1 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  nllyrest  22545  cdlemblem  37734  cdleme21  38278  cdleme22b  38282  cdleme40m  38408  cdlemg34  38653  cdlemk5u  38802  cdlemk6u  38803  cdlemk21N  38814  cdlemk20  38815  cdlemk26b-3  38846  cdlemk26-3  38847  cdlemk28-3  38849  cdlemky  38867  cdlemk11t  38887  cdlemkyyN  38903  dihmeetlem20N  39267  stoweidlem56  43487
  Copyright terms: Public domain W3C validator