MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r3 Structured version   Visualization version   GIF version

Theorem simp3r3 1283
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r3 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜒)

Proof of Theorem simp3r3
StepHypRef Expression
1 simpr3 1196 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2ant3 1135 1 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089
This theorem is referenced by:  nllyrest  22989  cdlemblem  38659  cdleme21  39203  cdleme22b  39207  cdleme40m  39333  cdlemg34  39578  cdlemk5u  39727  cdlemk6u  39728  cdlemk21N  39739  cdlemk20  39740  cdlemk26b-3  39771  cdlemk26-3  39772  cdlemk28-3  39774  cdlemky  39792  cdlemk11t  39812  cdlemkyyN  39828  dihmeetlem20N  40192  stoweidlem56  44762
  Copyright terms: Public domain W3C validator