MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r3 Structured version   Visualization version   GIF version

Theorem simp3r3 1284
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r3 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜒)

Proof of Theorem simp3r3
StepHypRef Expression
1 simpr3 1197 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2ant3 1135 1 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  hash7g  14411  nllyrest  23389  cdlemblem  39772  cdleme21  40316  cdleme22b  40320  cdleme40m  40446  cdlemg34  40691  cdlemk5u  40840  cdlemk6u  40841  cdlemk21N  40852  cdlemk20  40853  cdlemk26b-3  40884  cdlemk26-3  40885  cdlemk28-3  40887  cdlemky  40905  cdlemk11t  40925  cdlemkyyN  40941  dihmeetlem20N  41305  stoweidlem56  46038
  Copyright terms: Public domain W3C validator