MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r3 Structured version   Visualization version   GIF version

Theorem simp3r3 1284
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r3 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜒)

Proof of Theorem simp3r3
StepHypRef Expression
1 simpr3 1197 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2ant3 1136 1 ((𝜏𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090
This theorem is referenced by:  nllyrest  22959  cdlemblem  38570  cdleme21  39114  cdleme22b  39118  cdleme40m  39244  cdlemg34  39489  cdlemk5u  39638  cdlemk6u  39639  cdlemk21N  39650  cdlemk20  39651  cdlemk26b-3  39682  cdlemk26-3  39683  cdlemk28-3  39685  cdlemky  39703  cdlemk11t  39723  cdlemkyyN  39739  dihmeetlem20N  40103  stoweidlem56  44645
  Copyright terms: Public domain W3C validator