Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp3r3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp3r3 | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr3 1197 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
2 | 1 | 3ad2ant3 1136 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1090 |
This theorem is referenced by: nllyrest 22250 cdlemblem 37463 cdleme21 38007 cdleme22b 38011 cdleme40m 38137 cdlemg34 38382 cdlemk5u 38531 cdlemk6u 38532 cdlemk21N 38543 cdlemk20 38544 cdlemk26b-3 38575 cdlemk26-3 38576 cdlemk28-3 38578 cdlemky 38596 cdlemk11t 38616 cdlemkyyN 38632 dihmeetlem20N 38996 stoweidlem56 43180 |
Copyright terms: Public domain | W3C validator |