Proof of Theorem cdlemk11t
Step | Hyp | Ref
| Expression |
1 | | simp11l 1282 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → 𝐾 ∈ HL) |
2 | | simp11r 1283 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → 𝑊 ∈ 𝐻) |
3 | | cdlemk5.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
4 | | cdlemk5.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
5 | | cdlemk5.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
6 | | cdlemk5.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
7 | 3, 4, 5, 6 | cdlemftr3 38506 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑏 ∈ 𝑇 (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼)))) |
8 | 1, 2, 7 | syl2anc 583 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → ∃𝑏 ∈ 𝑇 (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼)))) |
9 | | nfv 1918 |
. . 3
⊢
Ⅎ𝑏(((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) |
10 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑏𝐺 |
11 | | cdlemk5.x |
. . . . . . 7
⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
12 | | nfra1 3142 |
. . . . . . . 8
⊢
Ⅎ𝑏∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌) |
13 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑏𝑇 |
14 | 12, 13 | nfriota 7225 |
. . . . . . 7
⊢
Ⅎ𝑏(℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
15 | 11, 14 | nfcxfr 2904 |
. . . . . 6
⊢
Ⅎ𝑏𝑋 |
16 | 10, 15 | nfcsbw 3855 |
. . . . 5
⊢
Ⅎ𝑏⦋𝐺 / 𝑔⦌𝑋 |
17 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑏𝑃 |
18 | 16, 17 | nffv 6766 |
. . . 4
⊢
Ⅎ𝑏(⦋𝐺 / 𝑔⦌𝑋‘𝑃) |
19 | | nfcv 2906 |
. . . 4
⊢
Ⅎ𝑏
≤ |
20 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑏𝐼 |
21 | 20, 15 | nfcsbw 3855 |
. . . . . 6
⊢
Ⅎ𝑏⦋𝐼 / 𝑔⦌𝑋 |
22 | 21, 17 | nffv 6766 |
. . . . 5
⊢
Ⅎ𝑏(⦋𝐼 / 𝑔⦌𝑋‘𝑃) |
23 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑏
∨ |
24 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑏(𝑅‘(𝐼 ∘ ◡𝐺)) |
25 | 22, 23, 24 | nfov 7285 |
. . . 4
⊢
Ⅎ𝑏((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘(𝐼 ∘ ◡𝐺))) |
26 | 18, 19, 25 | nfbr 5117 |
. . 3
⊢
Ⅎ𝑏(⦋𝐺 / 𝑔⦌𝑋‘𝑃) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘(𝐼 ∘ ◡𝐺))) |
27 | | simp11 1201 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼)))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)))) |
28 | | simp12 1202 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼)))) → (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) |
29 | | simp2 1135 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼)))) → 𝑏 ∈ 𝑇) |
30 | | simp3l 1199 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼)))) → 𝑏 ≠ ( I ↾ 𝐵)) |
31 | | simp3r1 1279 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼)))) → (𝑅‘𝑏) ≠ (𝑅‘𝐹)) |
32 | | simp3r2 1280 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼)))) → (𝑅‘𝑏) ≠ (𝑅‘𝐺)) |
33 | 30, 31, 32 | 3jca 1126 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼)))) → (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺))) |
34 | | simp13l 1286 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼)))) → 𝐼 ∈ 𝑇) |
35 | | simp13r 1287 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼)))) → 𝐼 ≠ ( I ↾ 𝐵)) |
36 | | simp3r3 1281 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼)))) → (𝑅‘𝑏) ≠ (𝑅‘𝐼)) |
37 | 34, 35, 36 | 3jca 1126 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼)))) → (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼))) |
38 | | cdlemk5.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
39 | | cdlemk5.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
40 | | cdlemk5.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
41 | | cdlemk5.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
42 | | cdlemk5.z |
. . . . . 6
⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
43 | | cdlemk5.y |
. . . . . 6
⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
44 | 3, 38, 39, 40, 41, 4, 5, 6, 42,
43, 11 | cdlemk11tc 38886 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼)))) → (⦋𝐺 / 𝑔⦌𝑋‘𝑃) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘(𝐼 ∘ ◡𝐺)))) |
45 | 27, 28, 29, 33, 37, 44 | syl113anc 1380 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) ∧ 𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼)))) → (⦋𝐺 / 𝑔⦌𝑋‘𝑃) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘(𝐼 ∘ ◡𝐺)))) |
46 | 45 | 3exp 1117 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (𝑏 ∈ 𝑇 → ((𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼))) → (⦋𝐺 / 𝑔⦌𝑋‘𝑃) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘(𝐼 ∘ ◡𝐺)))))) |
47 | 9, 26, 46 | rexlimd 3245 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (∃𝑏 ∈ 𝑇 (𝑏 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼))) → (⦋𝐺 / 𝑔⦌𝑋‘𝑃) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘(𝐼 ∘ ◡𝐺))))) |
48 | 8, 47 | mpd 15 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (⦋𝐺 / 𝑔⦌𝑋‘𝑃) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘(𝐼 ∘ ◡𝐺)))) |