Step | Hyp | Ref
| Expression |
1 | | cdlemg12.l |
. . 3
β’ β€ =
(leβπΎ) |
2 | | cdlemg12.j |
. . 3
β’ β¨ =
(joinβπΎ) |
3 | | cdlemg12.m |
. . 3
β’ β§ =
(meetβπΎ) |
4 | | cdlemg12.a |
. . 3
β’ π΄ = (AtomsβπΎ) |
5 | | cdlemg12.h |
. . 3
β’ π» = (LHypβπΎ) |
6 | | cdlemg12.t |
. . 3
β’ π = ((LTrnβπΎ)βπ) |
7 | | cdlemg12b.r |
. . 3
β’ π
= ((trLβπΎ)βπ) |
8 | | cdlemg31.n |
. . 3
β’ π = ((π β¨ π£) β§ (π β¨ (π
βπΉ))) |
9 | | cdlemg33.o |
. . 3
β’ π = ((π β¨ π£) β§ (π β¨ (π
βπΊ))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | cdlemg33 39582 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π
βπΉ) β§ π£ β (π
βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) |
11 | | simp11 1204 |
. . . 4
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π
βπΉ) β§ π£ β (π
βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄ β§ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) β ((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π))) |
12 | | simp121 1306 |
. . . 4
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π
βπΉ) β§ π£ β (π
βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄ β§ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) β (π£ β π΄ β§ π£ β€ π)) |
13 | | simp2 1138 |
. . . . 5
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π
βπΉ) β§ π£ β (π
βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄ β§ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) β π§ β π΄) |
14 | | simp3l 1202 |
. . . . 5
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π
βπΉ) β§ π£ β (π
βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄ β§ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) β Β¬ π§ β€ π) |
15 | 13, 14 | jca 513 |
. . . 4
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π
βπΉ) β§ π£ β (π
βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄ β§ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) β (π§ β π΄ β§ Β¬ π§ β€ π)) |
16 | | simp122 1307 |
. . . 4
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π
βπΉ) β§ π£ β (π
βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄ β§ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) β (πΉ β π β§ πΊ β π)) |
17 | | simp3r1 1282 |
. . . . 5
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π
βπΉ) β§ π£ β (π
βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄ β§ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) β π§ β π) |
18 | | simp3r2 1283 |
. . . . 5
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π
βπΉ) β§ π£ β (π
βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄ β§ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) β π§ β π) |
19 | 17, 18 | jca 513 |
. . . 4
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π
βπΉ) β§ π£ β (π
βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄ β§ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) β (π§ β π β§ π§ β π)) |
20 | | simp3r3 1284 |
. . . 4
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π
βπΉ) β§ π£ β (π
βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄ β§ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) β π§ β€ (π β¨ π£)) |
21 | | simp131 1309 |
. . . . 5
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π
βπΉ) β§ π£ β (π
βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄ β§ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) β π£ β (π
βπΉ)) |
22 | | simp132 1310 |
. . . . 5
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π
βπΉ) β§ π£ β (π
βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄ β§ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) β π£ β (π
βπΊ)) |
23 | 21, 22 | jca 513 |
. . . 4
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π
βπΉ) β§ π£ β (π
βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄ β§ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) β (π£ β (π
βπΉ) β§ π£ β (π
βπΊ))) |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | cdlemg29 39576 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π§ β π΄ β§ Β¬ π§ β€ π) β§ (πΉ β π β§ πΊ β π)) β§ ((π§ β π β§ π§ β π) β§ π§ β€ (π β¨ π£) β§ (π£ β (π
βπΉ) β§ π£ β (π
βπΊ)))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) |
25 | 11, 12, 15, 16, 19, 20, 23, 24 | syl133anc 1394 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π
βπΉ) β§ π£ β (π
βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ π§ β π΄ β§ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) |
26 | 25 | rexlimdv3a 3160 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π
βπΉ) β§ π£ β (π
βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (βπ§ β π΄ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π))) |
27 | 10, 26 | mpd 15 |
1
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π
βπΉ) β§ π£ β (π
βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) |