![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpr3r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr3r | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 772 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2antr3 1191 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: poxp2 8129 ax5seg 28196 segconeq 34982 ifscgr 35016 btwnconn1lem9 35067 btwnconn1lem11 35069 btwnconn1lem12 35070 lplnexllnN 38435 cdleme3b 39100 cdleme3c 39101 cdleme3e 39103 cdleme27a 39238 |
Copyright terms: Public domain | W3C validator |