Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpr3r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr3r | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 771 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2antr3 1190 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: ax5seg 27351 poxp2 33835 poxp3 33841 segconeq 34357 ifscgr 34391 btwnconn1lem9 34442 btwnconn1lem11 34444 btwnconn1lem12 34445 lplnexllnN 37620 cdleme3b 38285 cdleme3c 38286 cdleme3e 38288 cdleme27a 38423 |
Copyright terms: Public domain | W3C validator |