Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme3b Structured version   Visualization version   GIF version

Theorem cdleme3b 40276
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 40283 and cdleme3 40284. (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l = (le‘𝐾)
cdleme1.j = (join‘𝐾)
cdleme1.m = (meet‘𝐾)
cdleme1.a 𝐴 = (Atoms‘𝐾)
cdleme1.h 𝐻 = (LHyp‘𝐾)
cdleme1.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme1.f 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
Assertion
Ref Expression
cdleme3b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐹𝑅)

Proof of Theorem cdleme3b
StepHypRef Expression
1 simpll 766 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ HL)
2 simpr3l 1235 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅𝐴)
3 eqid 2731 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
4 cdleme1.a . . . . 5 𝐴 = (Atoms‘𝐾)
53, 4atbase 39336 . . . 4 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
62, 5syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅 ∈ (Base‘𝐾))
7 hllat 39410 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
87ad2antrr 726 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ Lat)
9 cdleme1.f . . . . 5 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
10 cdleme1.l . . . . . . . . . 10 = (le‘𝐾)
11 cdleme1.j . . . . . . . . . 10 = (join‘𝐾)
12 cdleme1.m . . . . . . . . . 10 = (meet‘𝐾)
13 cdleme1.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
14 cdleme1.u . . . . . . . . . 10 𝑈 = ((𝑃 𝑄) 𝑊)
1510, 11, 12, 4, 13, 14lhpat2 40092 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
16153adant3r3 1185 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑈𝐴)
173, 4atbase 39336 . . . . . . . 8 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
1816, 17syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑈 ∈ (Base‘𝐾))
193, 11latjcl 18345 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑅 𝑈) ∈ (Base‘𝐾))
208, 6, 18, 19syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝑈) ∈ (Base‘𝐾))
21 simpr2l 1233 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑄𝐴)
223, 4atbase 39336 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2321, 22syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑄 ∈ (Base‘𝐾))
24 simpr1l 1231 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑃𝐴)
253, 4atbase 39336 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2624, 25syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑃 ∈ (Base‘𝐾))
273, 11latjcl 18345 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 𝑅) ∈ (Base‘𝐾))
288, 26, 6, 27syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑃 𝑅) ∈ (Base‘𝐾))
293, 13lhpbase 40045 . . . . . . . . 9 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3029ad2antlr 727 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑊 ∈ (Base‘𝐾))
313, 12latmcl 18346 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑅) 𝑊) ∈ (Base‘𝐾))
328, 28, 30, 31syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑃 𝑅) 𝑊) ∈ (Base‘𝐾))
333, 11latjcl 18345 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑅) 𝑊) ∈ (Base‘𝐾)) → (𝑄 ((𝑃 𝑅) 𝑊)) ∈ (Base‘𝐾))
348, 23, 32, 33syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑄 ((𝑃 𝑅) 𝑊)) ∈ (Base‘𝐾))
353, 12latmcl 18346 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ((𝑃 𝑅) 𝑊)) ∈ (Base‘𝐾)) → ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))) ∈ (Base‘𝐾))
368, 20, 34, 35syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))) ∈ (Base‘𝐾))
379, 36eqeltrid 2835 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐹 ∈ (Base‘𝐾))
383, 11latjcl 18345 . . . 4 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝐹 ∈ (Base‘𝐾)) → (𝑅 𝐹) ∈ (Base‘𝐾))
398, 6, 37, 38syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝐹) ∈ (Base‘𝐾))
403, 11latjcl 18345 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
418, 26, 23, 40syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑃 𝑄) ∈ (Base‘𝐾))
423, 10, 12latmle2 18371 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
438, 41, 30, 42syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑃 𝑄) 𝑊) 𝑊)
4414, 43eqbrtrid 5124 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑈 𝑊)
45 simpr3r 1236 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ¬ 𝑅 𝑊)
46 nbrne2 5109 . . . . . . 7 ((𝑈 𝑊 ∧ ¬ 𝑅 𝑊) → 𝑈𝑅)
4744, 45, 46syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑈𝑅)
4847necomd 2983 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅𝑈)
49 eqid 2731 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
5011, 49, 4atcvr1 39464 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑈𝐴) → (𝑅𝑈𝑅( ⋖ ‘𝐾)(𝑅 𝑈)))
511, 2, 16, 50syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅𝑈𝑅( ⋖ ‘𝐾)(𝑅 𝑈)))
5248, 51mpbid 232 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅( ⋖ ‘𝐾)(𝑅 𝑈))
53 simpr3 1197 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
5424, 21, 533jca 1128 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)))
5510, 11, 12, 4, 13, 14, 9cdleme1 40274 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝐹) = (𝑅 𝑈))
5654, 55syldan 591 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝐹) = (𝑅 𝑈))
5752, 56breqtrrd 5117 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅( ⋖ ‘𝐾)(𝑅 𝐹))
583, 49cvrne 39328 . . 3 (((𝐾 ∈ HL ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑅 𝐹) ∈ (Base‘𝐾)) ∧ 𝑅( ⋖ ‘𝐾)(𝑅 𝐹)) → 𝑅 ≠ (𝑅 𝐹))
591, 6, 39, 57, 58syl31anc 1375 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅 ≠ (𝑅 𝐹))
60 oveq2 7354 . . . . . 6 (𝐹 = 𝑅 → (𝑅 𝐹) = (𝑅 𝑅))
6160adantl 481 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) ∧ 𝐹 = 𝑅) → (𝑅 𝐹) = (𝑅 𝑅))
6211, 4hlatjidm 39416 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
631, 2, 62syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝑅) = 𝑅)
6463adantr 480 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) ∧ 𝐹 = 𝑅) → (𝑅 𝑅) = 𝑅)
6561, 64eqtr2d 2767 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) ∧ 𝐹 = 𝑅) → 𝑅 = (𝑅 𝐹))
6665ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝐹 = 𝑅𝑅 = (𝑅 𝐹)))
6766necon3d 2949 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 ≠ (𝑅 𝐹) → 𝐹𝑅))
6859, 67mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐹𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  ccvr 39309  Atomscatm 39310  HLchlt 39397  LHypclh 40031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39223  df-ol 39225  df-oml 39226  df-covers 39313  df-ats 39314  df-atl 39345  df-cvlat 39369  df-hlat 39398  df-psubsp 39550  df-pmap 39551  df-padd 39843  df-lhyp 40035
This theorem is referenced by:  cdleme36m  40508
  Copyright terms: Public domain W3C validator