Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme3c Structured version   Visualization version   GIF version

Theorem cdleme3c 40212
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 40218 and cdleme3 40219. (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l = (le‘𝐾)
cdleme1.j = (join‘𝐾)
cdleme1.m = (meet‘𝐾)
cdleme1.a 𝐴 = (Atoms‘𝐾)
cdleme1.h 𝐻 = (LHyp‘𝐾)
cdleme1.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme1.f 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
cdleme3c.z 0 = (0.‘𝐾)
Assertion
Ref Expression
cdleme3c (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐹0 )

Proof of Theorem cdleme3c
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ HL)
2 hllat 39344 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
32ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ Lat)
4 simpr3l 1235 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅𝐴)
5 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
6 cdleme1.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
75, 6atbase 39270 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
84, 7syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅 ∈ (Base‘𝐾))
9 hlop 39343 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
109ad2antrr 726 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ OP)
11 cdleme3c.z . . . . . . 7 0 = (0.‘𝐾)
125, 11op0cl 39165 . . . . . 6 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
1310, 12syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 0 ∈ (Base‘𝐾))
14 cdleme1.j . . . . . 6 = (join‘𝐾)
155, 14latjcl 18363 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (𝑅 0 ) ∈ (Base‘𝐾))
163, 8, 13, 15syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 0 ) ∈ (Base‘𝐾))
17 simpl 482 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
18 simpr1l 1231 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑃𝐴)
19 simpr2l 1233 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑄𝐴)
20 cdleme1.l . . . . . . 7 = (le‘𝐾)
21 cdleme1.m . . . . . . 7 = (meet‘𝐾)
22 cdleme1.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
23 cdleme1.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
24 cdleme1.f . . . . . . 7 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
2520, 14, 21, 6, 22, 23, 24, 5cdleme1b 40208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐹 ∈ (Base‘𝐾))
2617, 18, 19, 4, 25syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐹 ∈ (Base‘𝐾))
275, 14latjcl 18363 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝐹 ∈ (Base‘𝐾)) → (𝑅 𝐹) ∈ (Base‘𝐾))
283, 8, 26, 27syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝐹) ∈ (Base‘𝐾))
295, 6atbase 39270 . . . . . . . . . . . 12 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3018, 29syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑃 ∈ (Base‘𝐾))
315, 6atbase 39270 . . . . . . . . . . . 12 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3219, 31syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑄 ∈ (Base‘𝐾))
335, 14latjcl 18363 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
343, 30, 32, 33syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑃 𝑄) ∈ (Base‘𝐾))
355, 22lhpbase 39980 . . . . . . . . . . 11 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3635ad2antlr 727 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑊 ∈ (Base‘𝐾))
375, 20, 21latmle2 18389 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
383, 34, 36, 37syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑃 𝑄) 𝑊) 𝑊)
3923, 38eqbrtrid 5130 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑈 𝑊)
40 simpr3r 1236 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ¬ 𝑅 𝑊)
41 nbrne2 5115 . . . . . . . 8 ((𝑈 𝑊 ∧ ¬ 𝑅 𝑊) → 𝑈𝑅)
4239, 40, 41syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑈𝑅)
4342necomd 2980 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅𝑈)
4420, 14, 21, 6, 22, 23lhpat2 40027 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
45443adant3r3 1185 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑈𝐴)
46 eqid 2729 . . . . . . . 8 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4714, 46, 6atcvr1 39399 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑈𝐴) → (𝑅𝑈𝑅( ⋖ ‘𝐾)(𝑅 𝑈)))
481, 4, 45, 47syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅𝑈𝑅( ⋖ ‘𝐾)(𝑅 𝑈)))
4943, 48mpbid 232 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝑅( ⋖ ‘𝐾)(𝑅 𝑈))
50 hlol 39342 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
5150ad2antrr 726 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐾 ∈ OL)
525, 14, 11olj01 39206 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑅 0 ) = 𝑅)
5351, 8, 52syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 0 ) = 𝑅)
54 simpr3 1197 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
5520, 14, 21, 6, 22, 23, 24cdleme1 40209 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝐹) = (𝑅 𝑈))
5617, 18, 19, 54, 55syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝐹) = (𝑅 𝑈))
5749, 53, 563brtr4d 5127 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 0 )( ⋖ ‘𝐾)(𝑅 𝐹))
585, 46cvrne 39262 . . . 4 (((𝐾 ∈ HL ∧ (𝑅 0 ) ∈ (Base‘𝐾) ∧ (𝑅 𝐹) ∈ (Base‘𝐾)) ∧ (𝑅 0 )( ⋖ ‘𝐾)(𝑅 𝐹)) → (𝑅 0 ) ≠ (𝑅 𝐹))
591, 16, 28, 57, 58syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 0 ) ≠ (𝑅 𝐹))
60 oveq2 7361 . . . 4 ( 0 = 𝐹 → (𝑅 0 ) = (𝑅 𝐹))
6160necon3i 2957 . . 3 ((𝑅 0 ) ≠ (𝑅 𝐹) → 0𝐹)
6259, 61syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 0𝐹)
6362necomd 2980 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐹0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  joincjn 18235  meetcmee 18236  0.cp0 18345  Latclat 18355  OPcops 39153  OLcol 39155  ccvr 39243  Atomscatm 39244  HLchlt 39331  LHypclh 39966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-psubsp 39485  df-pmap 39486  df-padd 39778  df-lhyp 39970
This theorem is referenced by:  cdleme3h  40217
  Copyright terms: Public domain W3C validator