Proof of Theorem cdleme3c
| Step | Hyp | Ref
| Expression |
| 1 | | simpll 767 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝐾 ∈ HL) |
| 2 | | hllat 39364 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 3 | 2 | ad2antrr 726 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝐾 ∈ Lat) |
| 4 | | simpr3l 1235 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑅 ∈ 𝐴) |
| 5 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 6 | | cdleme1.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
| 7 | 5, 6 | atbase 39290 |
. . . . . 6
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
| 8 | 4, 7 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑅 ∈ (Base‘𝐾)) |
| 9 | | hlop 39363 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| 10 | 9 | ad2antrr 726 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝐾 ∈ OP) |
| 11 | | cdleme3c.z |
. . . . . . 7
⊢ 0 =
(0.‘𝐾) |
| 12 | 5, 11 | op0cl 39185 |
. . . . . 6
⊢ (𝐾 ∈ OP → 0 ∈
(Base‘𝐾)) |
| 13 | 10, 12 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 0 ∈ (Base‘𝐾)) |
| 14 | | cdleme1.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
| 15 | 5, 14 | latjcl 18484 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (𝑅 ∨ 0 ) ∈ (Base‘𝐾)) |
| 16 | 3, 8, 13, 15 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 0 ) ∈ (Base‘𝐾)) |
| 17 | | simpl 482 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 18 | | simpr1l 1231 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑃 ∈ 𝐴) |
| 19 | | simpr2l 1233 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑄 ∈ 𝐴) |
| 20 | | cdleme1.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
| 21 | | cdleme1.m |
. . . . . . 7
⊢ ∧ =
(meet‘𝐾) |
| 22 | | cdleme1.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
| 23 | | cdleme1.u |
. . . . . . 7
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 24 | | cdleme1.f |
. . . . . . 7
⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
| 25 | 20, 14, 21, 6, 22, 23, 24, 5 | cdleme1b 40228 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐹 ∈ (Base‘𝐾)) |
| 26 | 17, 18, 19, 4, 25 | syl13anc 1374 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝐹 ∈ (Base‘𝐾)) |
| 27 | 5, 14 | latjcl 18484 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝐹 ∈ (Base‘𝐾)) → (𝑅 ∨ 𝐹) ∈ (Base‘𝐾)) |
| 28 | 3, 8, 26, 27 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 𝐹) ∈ (Base‘𝐾)) |
| 29 | 5, 6 | atbase 39290 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 30 | 18, 29 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑃 ∈ (Base‘𝐾)) |
| 31 | 5, 6 | atbase 39290 |
. . . . . . . . . . . 12
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 32 | 19, 31 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑄 ∈ (Base‘𝐾)) |
| 33 | 5, 14 | latjcl 18484 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 34 | 3, 30, 32, 33 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 35 | 5, 22 | lhpbase 40000 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 36 | 35 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑊 ∈ (Base‘𝐾)) |
| 37 | 5, 20, 21 | latmle2 18510 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
| 38 | 3, 34, 36, 37 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
| 39 | 23, 38 | eqbrtrid 5178 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑈 ≤ 𝑊) |
| 40 | | simpr3r 1236 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ¬ 𝑅 ≤ 𝑊) |
| 41 | | nbrne2 5163 |
. . . . . . . 8
⊢ ((𝑈 ≤ 𝑊 ∧ ¬ 𝑅 ≤ 𝑊) → 𝑈 ≠ 𝑅) |
| 42 | 39, 40, 41 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑈 ≠ 𝑅) |
| 43 | 42 | necomd 2996 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑅 ≠ 𝑈) |
| 44 | 20, 14, 21, 6, 22, 23 | lhpat2 40047 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑈 ∈ 𝐴) |
| 45 | 44 | 3adant3r3 1185 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑈 ∈ 𝐴) |
| 46 | | eqid 2737 |
. . . . . . . 8
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) |
| 47 | 14, 46, 6 | atcvr1 39419 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑅 ≠ 𝑈 ↔ 𝑅( ⋖ ‘𝐾)(𝑅 ∨ 𝑈))) |
| 48 | 1, 4, 45, 47 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ≠ 𝑈 ↔ 𝑅( ⋖ ‘𝐾)(𝑅 ∨ 𝑈))) |
| 49 | 43, 48 | mpbid 232 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝑅( ⋖ ‘𝐾)(𝑅 ∨ 𝑈)) |
| 50 | | hlol 39362 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| 51 | 50 | ad2antrr 726 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝐾 ∈ OL) |
| 52 | 5, 14, 11 | olj01 39226 |
. . . . . 6
⊢ ((𝐾 ∈ OL ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑅 ∨ 0 ) = 𝑅) |
| 53 | 51, 8, 52 | syl2anc 584 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 0 ) = 𝑅) |
| 54 | | simpr3 1197 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
| 55 | 20, 14, 21, 6, 22, 23, 24 | cdleme1 40229 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 𝐹) = (𝑅 ∨ 𝑈)) |
| 56 | 17, 18, 19, 54, 55 | syl13anc 1374 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 𝐹) = (𝑅 ∨ 𝑈)) |
| 57 | 49, 53, 56 | 3brtr4d 5175 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 0 )( ⋖ ‘𝐾)(𝑅 ∨ 𝐹)) |
| 58 | 5, 46 | cvrne 39282 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑅 ∨ 0 ) ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝐹) ∈ (Base‘𝐾)) ∧ (𝑅 ∨ 0 )( ⋖ ‘𝐾)(𝑅 ∨ 𝐹)) → (𝑅 ∨ 0 ) ≠ (𝑅 ∨ 𝐹)) |
| 59 | 1, 16, 28, 57, 58 | syl31anc 1375 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 0 ) ≠ (𝑅 ∨ 𝐹)) |
| 60 | | oveq2 7439 |
. . . 4
⊢ ( 0 = 𝐹 → (𝑅 ∨ 0 ) = (𝑅 ∨ 𝐹)) |
| 61 | 60 | necon3i 2973 |
. . 3
⊢ ((𝑅 ∨ 0 ) ≠ (𝑅 ∨ 𝐹) → 0 ≠ 𝐹) |
| 62 | 59, 61 | syl 17 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 0 ≠ 𝐹) |
| 63 | 62 | necomd 2996 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝐹 ≠ 0 ) |