Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifscgr Structured version   Visualization version   GIF version

Theorem ifscgr 36018
Description: Inner five segment congruence. Take two triangles, 𝐴𝐷𝐶 and 𝐸𝐻𝐺, with 𝐵 between 𝐴 and 𝐶 and 𝐹 between 𝐸 and 𝐺. If the other components of the triangles are congruent, then so are 𝐵𝐷 and 𝐹𝐻. Theorem 4.2 of [Schwabhauser] p. 34. (Contributed by Scott Fenton, 27-Sep-2013.)
Assertion
Ref Expression
ifscgr (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ InnerFiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))

Proof of Theorem ifscgr
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brifs 36017 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ InnerFiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
2 simp1l 1198 . . . . . 6 (((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → 𝐵 Btwn ⟨𝐶, 𝐶⟩)
3 simp11 1204 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
4 simp13 1206 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
5 simp21 1207 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
6 axbtwnid 28884 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐶, 𝐶⟩ → 𝐵 = 𝐶))
73, 4, 5, 6syl3anc 1373 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐶⟩ → 𝐵 = 𝐶))
82, 7syl5 34 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → 𝐵 = 𝐶))
9 simp2r 1201 . . . . . . . . 9 (((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩)
10 simp3r 1203 . . . . . . . . 9 (((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)
119, 10jca 511 . . . . . . . 8 (((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → (⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))
12 opeq2 4825 . . . . . . . . . . 11 (𝐵 = 𝐶 → ⟨𝐵, 𝐵⟩ = ⟨𝐵, 𝐶⟩)
1312breq1d 5102 . . . . . . . . . 10 (𝐵 = 𝐶 → (⟨𝐵, 𝐵⟩Cgr⟨𝐹, 𝐺⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩))
14 opeq1 4824 . . . . . . . . . . 11 (𝐵 = 𝐶 → ⟨𝐵, 𝐷⟩ = ⟨𝐶, 𝐷⟩)
1514breq1d 5102 . . . . . . . . . 10 (𝐵 = 𝐶 → (⟨𝐵, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ ↔ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))
1613, 15anbi12d 632 . . . . . . . . 9 (𝐵 = 𝐶 → ((⟨𝐵, 𝐵⟩Cgr⟨𝐹, 𝐺⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) ↔ (⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))
1716biimprd 248 . . . . . . . 8 (𝐵 = 𝐶 → ((⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) → (⟨𝐵, 𝐵⟩Cgr⟨𝐹, 𝐺⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))
1811, 17mpan9 506 . . . . . . 7 ((((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐵 = 𝐶) → (⟨𝐵, 𝐵⟩Cgr⟨𝐹, 𝐺⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))
19 simp31 1210 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
20 simp32 1211 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐺 ∈ (𝔼‘𝑁))
21 cgrid2 35977 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁))) → (⟨𝐵, 𝐵⟩Cgr⟨𝐹, 𝐺⟩ → 𝐹 = 𝐺))
223, 4, 19, 20, 21syl13anc 1374 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨𝐵, 𝐵⟩Cgr⟨𝐹, 𝐺⟩ → 𝐹 = 𝐺))
23 opeq1 4824 . . . . . . . . . . 11 (𝐹 = 𝐺 → ⟨𝐹, 𝐻⟩ = ⟨𝐺, 𝐻⟩)
2423breq2d 5104 . . . . . . . . . 10 (𝐹 = 𝐺 → (⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩ ↔ ⟨𝐵, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))
2524biimprd 248 . . . . . . . . 9 (𝐹 = 𝐺 → (⟨𝐵, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
2622, 25syl6 35 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨𝐵, 𝐵⟩Cgr⟨𝐹, 𝐺⟩ → (⟨𝐵, 𝐷⟩Cgr⟨𝐺, 𝐻⟩ → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
2726impd 410 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((⟨𝐵, 𝐵⟩Cgr⟨𝐹, 𝐺⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐺, 𝐻⟩) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
2818, 27syl5 34 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐵 = 𝐶) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
2928expd 415 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → (𝐵 = 𝐶 → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
308, 29mpdd 43 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
31 opeq1 4824 . . . . . . . 8 (𝐴 = 𝐶 → ⟨𝐴, 𝐶⟩ = ⟨𝐶, 𝐶⟩)
3231breq2d 5104 . . . . . . 7 (𝐴 = 𝐶 → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐶⟩))
3332anbi1d 631 . . . . . 6 (𝐴 = 𝐶 → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ↔ (𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩)))
3431breq1d 5102 . . . . . . 7 (𝐴 = 𝐶 → (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ↔ ⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩))
3534anbi1d 631 . . . . . 6 (𝐴 = 𝐶 → ((⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ↔ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩)))
3633, 353anbi12d 1439 . . . . 5 (𝐴 = 𝐶 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ↔ ((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
3736imbi1d 341 . . . 4 (𝐴 = 𝐶 → ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩) ↔ (((𝐵 Btwn ⟨𝐶, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐶, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
3830, 37imbitrrid 246 . . 3 (𝐴 = 𝐶 → (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
39 simp12 1205 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
40 btwndiff 36001 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒))
413, 39, 5, 40syl3anc 1373 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒))
42 simpl11 1249 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
43 simpl23 1254 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝐸 ∈ (𝔼‘𝑁))
44 simpl32 1256 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝐺 ∈ (𝔼‘𝑁))
45 simpl21 1252 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
46 simpr 484 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → 𝑒 ∈ (𝔼‘𝑁))
47 axsegcon 28872 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩))
4842, 43, 44, 45, 46, 47syl122anc 1381 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ∃𝑓 ∈ (𝔼‘𝑁)(𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩))
49 anass 468 . . . . . . . . . . . . 13 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶)) ↔ ((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ ((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶))))
50 anass 468 . . . . . . . . . . . . . 14 (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ 𝐴𝐶) ↔ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶)))
51 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → 𝐶 Btwn ⟨𝐴, 𝑒⟩)
5251adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → 𝐶 Btwn ⟨𝐴, 𝑒⟩)
53 simplll 774 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → 𝐺 Btwn ⟨𝐸, 𝑓⟩)
5453adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → 𝐺 Btwn ⟨𝐸, 𝑓⟩)
5552, 54jca 511 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐸, 𝑓⟩))
56 simpr2l 1233 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩)
5756adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩)
58 simpllr 775 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩)
5958adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩)
603ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → 𝑁 ∈ ℕ)
6120ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → 𝐺 ∈ (𝔼‘𝑁))
62 simplrr 777 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → 𝑓 ∈ (𝔼‘𝑁))
635ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → 𝐶 ∈ (𝔼‘𝑁))
64 simplrl 776 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → 𝑒 ∈ (𝔼‘𝑁))
65 cgrcom 35964 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → (⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩ ↔ ⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩))
6660, 61, 62, 63, 64, 65syl122anc 1381 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → (⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩ ↔ ⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩))
6759, 66mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → ⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩)
6857, 67jca 511 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩))
69 simprr3 1224 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))
7055, 68, 693jca 1128 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) → ((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))
7170ex 412 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → ((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
72 simpl11 1249 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
73 simpl12 1250 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
74 simpl21 1252 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
75 simprl 770 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑒 ∈ (𝔼‘𝑁))
76 simpl22 1253 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
77 simpl23 1254 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
78 simpl32 1256 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐺 ∈ (𝔼‘𝑁))
79 simprr 772 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑓 ∈ (𝔼‘𝑁))
80 simpl33 1257 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐻 ∈ (𝔼‘𝑁))
81 brofs 35979 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐶⟩, ⟨𝑒, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝐸, 𝐺⟩, ⟨𝑓, 𝐻⟩⟩ ↔ ((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
8272, 73, 74, 75, 76, 77, 78, 79, 80, 81syl333anc 1404 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐶⟩, ⟨𝑒, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝐸, 𝐺⟩, ⟨𝑓, 𝐻⟩⟩ ↔ ((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐸, 𝑓⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
8371, 82sylibrd 259 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → ⟨⟨𝐴, 𝐶⟩, ⟨𝑒, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝐸, 𝐺⟩, ⟨𝑓, 𝐻⟩⟩))
84 5segofs 35980 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((⟨⟨𝐴, 𝐶⟩, ⟨𝑒, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝐸, 𝐺⟩, ⟨𝑓, 𝐻⟩⟩ ∧ 𝐴𝐶) → ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩))
8572, 73, 74, 75, 76, 77, 78, 79, 80, 84syl333anc 1404 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((⟨⟨𝐴, 𝐶⟩, ⟨𝑒, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝐸, 𝐺⟩, ⟨𝑓, 𝐻⟩⟩ ∧ 𝐴𝐶) → ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩))
8683, 85syland 603 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ 𝐴𝐶) → ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩))
87 simpr1l 1231 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
8887adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
8951adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → 𝐶 Btwn ⟨𝐴, 𝑒⟩)
9088, 89jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑒⟩))
91 simpr1r 1232 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → 𝐹 Btwn ⟨𝐸, 𝐺⟩)
9291adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → 𝐹 Btwn ⟨𝐸, 𝐺⟩)
9353adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → 𝐺 Btwn ⟨𝐸, 𝑓⟩)
9490, 92, 93jca32 515 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑒⟩) ∧ (𝐹 Btwn ⟨𝐸, 𝐺⟩ ∧ 𝐺 Btwn ⟨𝐸, 𝑓⟩)))
95 simpl13 1251 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
96 btwnexch3 35994 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑒⟩) → 𝐶 Btwn ⟨𝐵, 𝑒⟩))
9772, 73, 95, 74, 75, 96syl122anc 1381 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑒⟩) → 𝐶 Btwn ⟨𝐵, 𝑒⟩))
98 simpl31 1255 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
99 btwnexch3 35994 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝐹 Btwn ⟨𝐸, 𝐺⟩ ∧ 𝐺 Btwn ⟨𝐸, 𝑓⟩) → 𝐺 Btwn ⟨𝐹, 𝑓⟩))
10072, 77, 98, 78, 79, 99syl122anc 1381 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝐹 Btwn ⟨𝐸, 𝐺⟩ ∧ 𝐺 Btwn ⟨𝐸, 𝑓⟩) → 𝐺 Btwn ⟨𝐹, 𝑓⟩))
10197, 100anim12d 609 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑒⟩) ∧ (𝐹 Btwn ⟨𝐸, 𝐺⟩ ∧ 𝐺 Btwn ⟨𝐸, 𝑓⟩)) → (𝐶 Btwn ⟨𝐵, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐹, 𝑓⟩)))
10294, 101syl5 34 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → (𝐶 Btwn ⟨𝐵, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐹, 𝑓⟩)))
103102imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → (𝐶 Btwn ⟨𝐵, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐹, 𝑓⟩))
104 btwncom 35988 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐵, 𝑒⟩ ↔ 𝐶 Btwn ⟨𝑒, 𝐵⟩))
10572, 74, 95, 75, 104syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐵, 𝑒⟩ ↔ 𝐶 Btwn ⟨𝑒, 𝐵⟩))
106 btwncom 35988 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℕ ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (𝐺 Btwn ⟨𝐹, 𝑓⟩ ↔ 𝐺 Btwn ⟨𝑓, 𝐹⟩))
10772, 78, 98, 79, 106syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (𝐺 Btwn ⟨𝐹, 𝑓⟩ ↔ 𝐺 Btwn ⟨𝑓, 𝐹⟩))
108105, 107anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝐶 Btwn ⟨𝐵, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐹, 𝑓⟩) ↔ (𝐶 Btwn ⟨𝑒, 𝐵⟩ ∧ 𝐺 Btwn ⟨𝑓, 𝐹⟩)))
109108adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → ((𝐶 Btwn ⟨𝐵, 𝑒⟩ ∧ 𝐺 Btwn ⟨𝐹, 𝑓⟩) ↔ (𝐶 Btwn ⟨𝑒, 𝐵⟩ ∧ 𝐺 Btwn ⟨𝑓, 𝐹⟩)))
110103, 109mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → (𝐶 Btwn ⟨𝑒, 𝐵⟩ ∧ 𝐺 Btwn ⟨𝑓, 𝐹⟩))
11158ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩)
11272, 78, 79, 74, 75, 65syl122anc 1381 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩ ↔ ⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩))
113 cgrcomlr 35972 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩ ↔ ⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩))
11472, 74, 75, 78, 79, 113syl122anc 1381 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝑒⟩Cgr⟨𝐺, 𝑓⟩ ↔ ⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩))
115112, 114bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩ ↔ ⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩))
116115adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → (⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩ ↔ ⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩))
117111, 116mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → ⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩)
118 simpr2r 1234 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩)
119118ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩)
12072, 95, 74, 98, 78, 119cgrcomlrand 35975 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → ⟨𝐶, 𝐵⟩Cgr⟨𝐺, 𝐹⟩)
121117, 120jca 511 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → (⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩ ∧ ⟨𝐶, 𝐵⟩Cgr⟨𝐺, 𝐹⟩))
122 simprr 772 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)
123 simpr3r 1236 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)
124123ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)
125122, 124jca 511 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → (⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))
126110, 121, 1253jca 1128 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩)) → ((𝐶 Btwn ⟨𝑒, 𝐵⟩ ∧ 𝐺 Btwn ⟨𝑓, 𝐹⟩) ∧ (⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩ ∧ ⟨𝐶, 𝐵⟩Cgr⟨𝐺, 𝐹⟩) ∧ (⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))
127126ex 412 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → ((𝐶 Btwn ⟨𝑒, 𝐵⟩ ∧ 𝐺 Btwn ⟨𝑓, 𝐹⟩) ∧ (⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩ ∧ ⟨𝐶, 𝐵⟩Cgr⟨𝐺, 𝐹⟩) ∧ (⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
128 brofs 35979 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝑒, 𝐶⟩, ⟨𝐵, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝑓, 𝐺⟩, ⟨𝐹, 𝐻⟩⟩ ↔ ((𝐶 Btwn ⟨𝑒, 𝐵⟩ ∧ 𝐺 Btwn ⟨𝑓, 𝐹⟩) ∧ (⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩ ∧ ⟨𝐶, 𝐵⟩Cgr⟨𝐺, 𝐹⟩) ∧ (⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
12972, 75, 74, 95, 76, 79, 78, 98, 80, 128syl333anc 1404 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨⟨𝑒, 𝐶⟩, ⟨𝐵, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝑓, 𝐺⟩, ⟨𝐹, 𝐻⟩⟩ ↔ ((𝐶 Btwn ⟨𝑒, 𝐵⟩ ∧ 𝐺 Btwn ⟨𝑓, 𝐹⟩) ∧ (⟨𝑒, 𝐶⟩Cgr⟨𝑓, 𝐺⟩ ∧ ⟨𝐶, 𝐵⟩Cgr⟨𝐺, 𝐹⟩) ∧ (⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
130127, 129sylibrd 259 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → ⟨⟨𝑒, 𝐶⟩, ⟨𝐵, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝑓, 𝐺⟩, ⟨𝐹, 𝐻⟩⟩))
131 simplrr 777 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → 𝐶𝑒)
132131adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → 𝐶𝑒)
133132necomd 2980 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → 𝑒𝐶)
134133a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → 𝑒𝐶))
135130, 134jcad 512 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → (⟨⟨𝑒, 𝐶⟩, ⟨𝐵, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝑓, 𝐺⟩, ⟨𝐹, 𝐻⟩⟩ ∧ 𝑒𝐶)))
136 5segofs 35980 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((⟨⟨𝑒, 𝐶⟩, ⟨𝐵, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝑓, 𝐺⟩, ⟨𝐹, 𝐻⟩⟩ ∧ 𝑒𝐶) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
13772, 75, 74, 95, 76, 79, 78, 98, 80, 136syl333anc 1404 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((⟨⟨𝑒, 𝐶⟩, ⟨𝐵, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝑓, 𝐺⟩, ⟨𝐹, 𝐻⟩⟩ ∧ 𝑒𝐶) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
138135, 137syld 47 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ ⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
139138expd 415 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) → (⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩ → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
140139adantrd 491 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ 𝐴𝐶) → (⟨𝑒, 𝐷⟩Cgr⟨𝑓, 𝐻⟩ → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
14186, 140mpdd 43 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) ∧ 𝐴𝐶) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
14250, 141biimtrrid 243 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒)) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
14349, 142biimtrrid 243 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) ∧ ((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶))) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
144143expd 415 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) → (((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
145144anassrs 467 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) → (((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
146145rexlimdva 3130 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (∃𝑓 ∈ (𝔼‘𝑁)(𝐺 Btwn ⟨𝐸, 𝑓⟩ ∧ ⟨𝐺, 𝑓⟩Cgr⟨𝐶, 𝑒⟩) → (((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
14748, 146mpd 15 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → (((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
148147expd 415 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ((𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒) → ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
149148rexlimdva 3130 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (∃𝑒 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝐴, 𝑒⟩ ∧ 𝐶𝑒) → ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
15041, 149mpd 15 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) ∧ 𝐴𝐶) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
151150expd 415 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → (𝐴𝐶 → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
152151com3r 87 . . 3 (𝐴𝐶 → (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
15338, 152pm2.61ine 3008 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
1541, 153sylbid 240 1 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ InnerFiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ → ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cop 4583   class class class wbr 5092  cfv 6482  cn 12128  𝔼cee 28833   Btwn cbtwn 28834  Cgrccgr 28835   OuterFiveSeg cofs 35956   InnerFiveSeg cifs 36009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-ee 28836  df-btwn 28837  df-cgr 28838  df-ofs 35957  df-ifs 36014
This theorem is referenced by:  cgrsub  36019  btwnxfr  36030  fscgr  36054  btwnconn1lem5  36065  btwnconn1lem6  36066
  Copyright terms: Public domain W3C validator