Proof of Theorem cdleme3e
Step | Hyp | Ref
| Expression |
1 | | cdleme3.3 |
. 2
⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) |
2 | | simpl 483 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
3 | | simpr1 1193 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
4 | | simpr3l 1233 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑅 ∈ 𝐴) |
5 | | hllat 37377 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
6 | 5 | ad2antrr 723 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝐾 ∈ Lat) |
7 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
8 | | cdleme1.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
9 | 7, 8 | atbase 37303 |
. . . . . 6
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
10 | 4, 9 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑅 ∈ (Base‘𝐾)) |
11 | | simpr1l 1229 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑃 ∈ 𝐴) |
12 | 7, 8 | atbase 37303 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑃 ∈ (Base‘𝐾)) |
14 | | simpr2 1194 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑄 ∈ 𝐴) |
15 | 7, 8 | atbase 37303 |
. . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
16 | 14, 15 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑄 ∈ (Base‘𝐾)) |
17 | | simpr3r 1234 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) |
18 | | cdleme1.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
19 | | cdleme1.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
20 | 7, 18, 19 | latnlej1l 18175 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑅 ≠ 𝑃) |
21 | 6, 10, 13, 16, 17, 20 | syl131anc 1382 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑅 ≠ 𝑃) |
22 | 21 | necomd 2999 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑃 ≠ 𝑅) |
23 | | cdleme1.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
24 | | cdleme1.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
25 | 18, 19, 23, 8, 24 | lhpat 38057 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 ≠ 𝑅)) → ((𝑃 ∨ 𝑅) ∧ 𝑊) ∈ 𝐴) |
26 | 2, 3, 4, 22, 25 | syl112anc 1373 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → ((𝑃 ∨ 𝑅) ∧ 𝑊) ∈ 𝐴) |
27 | 1, 26 | eqeltrid 2843 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑉 ∈ 𝐴) |