Proof of Theorem cdleme3e
| Step | Hyp | Ref
| Expression |
| 1 | | cdleme3.3 |
. 2
⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) |
| 2 | | simpl 482 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 3 | | simpr1 1195 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 4 | | simpr3l 1235 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑅 ∈ 𝐴) |
| 5 | | hllat 39386 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 6 | 5 | ad2antrr 726 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝐾 ∈ Lat) |
| 7 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 8 | | cdleme1.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
| 9 | 7, 8 | atbase 39312 |
. . . . . 6
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
| 10 | 4, 9 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑅 ∈ (Base‘𝐾)) |
| 11 | | simpr1l 1231 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑃 ∈ 𝐴) |
| 12 | 7, 8 | atbase 39312 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 13 | 11, 12 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑃 ∈ (Base‘𝐾)) |
| 14 | | simpr2 1196 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑄 ∈ 𝐴) |
| 15 | 7, 8 | atbase 39312 |
. . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 16 | 14, 15 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑄 ∈ (Base‘𝐾)) |
| 17 | | simpr3r 1236 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) |
| 18 | | cdleme1.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
| 19 | | cdleme1.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
| 20 | 7, 18, 19 | latnlej1l 18472 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑅 ≠ 𝑃) |
| 21 | 6, 10, 13, 16, 17, 20 | syl131anc 1385 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑅 ≠ 𝑃) |
| 22 | 21 | necomd 2988 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑃 ≠ 𝑅) |
| 23 | | cdleme1.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
| 24 | | cdleme1.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 25 | 18, 19, 23, 8, 24 | lhpat 40067 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 ≠ 𝑅)) → ((𝑃 ∨ 𝑅) ∧ 𝑊) ∈ 𝐴) |
| 26 | 2, 3, 4, 22, 25 | syl112anc 1376 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → ((𝑃 ∨ 𝑅) ∧ 𝑊) ∈ 𝐴) |
| 27 | 1, 26 | eqeltrid 2839 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑉 ∈ 𝐴) |