Step | Hyp | Ref
| Expression |
1 | | simpl2 1190 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → 𝑋 ∈ 𝑃) |
2 | | simpl1 1189 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → 𝐾 ∈ HL) |
3 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
4 | | lplnexat.p |
. . . . . 6
⊢ 𝑃 = (LPlanes‘𝐾) |
5 | 3, 4 | lplnbase 37475 |
. . . . 5
⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ (Base‘𝐾)) |
6 | 1, 5 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → 𝑋 ∈ (Base‘𝐾)) |
7 | | lplnexat.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
8 | | lplnexat.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
9 | | lplnexat.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
10 | | lplnexat.n |
. . . . 5
⊢ 𝑁 = (LLines‘𝐾) |
11 | 3, 7, 8, 9, 10, 4 | islpln3 37474 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋 ∈ 𝑃 ↔ ∃𝑧 ∈ 𝑁 ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) |
12 | 2, 6, 11 | syl2anc 583 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → (𝑋 ∈ 𝑃 ↔ ∃𝑧 ∈ 𝑁 ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) |
13 | 1, 12 | mpbid 231 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → ∃𝑧 ∈ 𝑁 ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) |
14 | | simpll1 1210 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝐾 ∈ HL) |
15 | | simpr2l 1230 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑧 ∈ 𝑁) |
16 | | simpll3 1212 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑄 ∈ 𝐴) |
17 | | simpr1 1192 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑄 ≤ 𝑧) |
18 | 7, 8, 9, 10 | llnexatN 37462 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑧 ∈ 𝑁 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑧) → ∃𝑠 ∈ 𝐴 (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠))) |
19 | 14, 15, 16, 17, 18 | syl31anc 1371 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → ∃𝑠 ∈ 𝐴 (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠))) |
20 | | simp1l1 1264 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝐾 ∈ HL) |
21 | | simp22r 1291 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑟 ∈ 𝐴) |
22 | | simp3l 1199 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑠 ∈ 𝐴) |
23 | | simp1l3 1266 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑄 ∈ 𝐴) |
24 | | simp23l 1292 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → ¬ 𝑟 ≤ 𝑧) |
25 | | simp3rr 1245 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑧 = (𝑄 ∨ 𝑠)) |
26 | 25 | breq2d 5082 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → (𝑟 ≤ 𝑧 ↔ 𝑟 ≤ (𝑄 ∨ 𝑠))) |
27 | 24, 26 | mtbid 323 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → ¬ 𝑟 ≤ (𝑄 ∨ 𝑠)) |
28 | 7, 8, 9 | atnlej2 37321 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑟 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ ¬ 𝑟 ≤ (𝑄 ∨ 𝑠)) → 𝑟 ≠ 𝑠) |
29 | 20, 21, 23, 22, 27, 28 | syl131anc 1381 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑟 ≠ 𝑠) |
30 | 8, 9, 10 | llni2 37453 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑟 ≠ 𝑠) → (𝑟 ∨ 𝑠) ∈ 𝑁) |
31 | 20, 21, 22, 29, 30 | syl31anc 1371 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → (𝑟 ∨ 𝑠) ∈ 𝑁) |
32 | | simp3rl 1244 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑄 ≠ 𝑠) |
33 | 7, 8, 9 | hlatcon2 37393 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑄 ≠ 𝑠 ∧ ¬ 𝑟 ≤ (𝑄 ∨ 𝑠))) → ¬ 𝑄 ≤ (𝑟 ∨ 𝑠)) |
34 | 20, 23, 22, 21, 32, 27, 33 | syl132anc 1386 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → ¬ 𝑄 ≤ (𝑟 ∨ 𝑠)) |
35 | | simp23r 1293 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑋 = (𝑧 ∨ 𝑟)) |
36 | 25 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → (𝑧 ∨ 𝑟) = ((𝑄 ∨ 𝑠) ∨ 𝑟)) |
37 | 20 | hllatd 37305 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝐾 ∈ Lat) |
38 | 3, 9 | atbase 37230 |
. . . . . . . . . . . . 13
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
39 | 23, 38 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑄 ∈ (Base‘𝐾)) |
40 | 3, 9 | atbase 37230 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ 𝐴 → 𝑠 ∈ (Base‘𝐾)) |
41 | 22, 40 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑠 ∈ (Base‘𝐾)) |
42 | 3, 9 | atbase 37230 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ 𝐴 → 𝑟 ∈ (Base‘𝐾)) |
43 | 21, 42 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑟 ∈ (Base‘𝐾)) |
44 | 3, 8 | latj31 18120 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾))) → ((𝑄 ∨ 𝑠) ∨ 𝑟) = ((𝑟 ∨ 𝑠) ∨ 𝑄)) |
45 | 37, 39, 41, 43, 44 | syl13anc 1370 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → ((𝑄 ∨ 𝑠) ∨ 𝑟) = ((𝑟 ∨ 𝑠) ∨ 𝑄)) |
46 | 35, 36, 45 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → 𝑋 = ((𝑟 ∨ 𝑠) ∨ 𝑄)) |
47 | | breq2 5074 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑟 ∨ 𝑠) → (𝑄 ≤ 𝑦 ↔ 𝑄 ≤ (𝑟 ∨ 𝑠))) |
48 | 47 | notbid 317 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑟 ∨ 𝑠) → (¬ 𝑄 ≤ 𝑦 ↔ ¬ 𝑄 ≤ (𝑟 ∨ 𝑠))) |
49 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑟 ∨ 𝑠) → (𝑦 ∨ 𝑄) = ((𝑟 ∨ 𝑠) ∨ 𝑄)) |
50 | 49 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑟 ∨ 𝑠) → (𝑋 = (𝑦 ∨ 𝑄) ↔ 𝑋 = ((𝑟 ∨ 𝑠) ∨ 𝑄))) |
51 | 48, 50 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑟 ∨ 𝑠) → ((¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)) ↔ (¬ 𝑄 ≤ (𝑟 ∨ 𝑠) ∧ 𝑋 = ((𝑟 ∨ 𝑠) ∨ 𝑄)))) |
52 | 51 | rspcev 3552 |
. . . . . . . . . 10
⊢ (((𝑟 ∨ 𝑠) ∈ 𝑁 ∧ (¬ 𝑄 ≤ (𝑟 ∨ 𝑠) ∧ 𝑋 = ((𝑟 ∨ 𝑠) ∨ 𝑄))) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))) |
53 | 31, 34, 46, 52 | syl12anc 833 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))) |
54 | 53 | 3expia 1119 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → ((𝑠 ∈ 𝐴 ∧ (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠))) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))) |
55 | 54 | expd 415 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → (𝑠 ∈ 𝐴 → ((𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))))) |
56 | 55 | rexlimdv 3211 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → (∃𝑠 ∈ 𝐴 (𝑄 ≠ 𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))) |
57 | 19, 56 | mpd 15 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))) |
58 | 57 | 3exp2 1352 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → (𝑄 ≤ 𝑧 → ((𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) → ((¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))))) |
59 | | simpr2l 1230 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑧 ∈ 𝑁) |
60 | | simpr1 1192 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → ¬ 𝑄 ≤ 𝑧) |
61 | | simpll1 1210 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝐾 ∈ HL) |
62 | 61 | hllatd 37305 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝐾 ∈ Lat) |
63 | 3, 10 | llnbase 37450 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝑁 → 𝑧 ∈ (Base‘𝐾)) |
64 | 59, 63 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑧 ∈ (Base‘𝐾)) |
65 | | simpr2r 1231 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑟 ∈ 𝐴) |
66 | 65, 42 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑟 ∈ (Base‘𝐾)) |
67 | 3, 7, 8 | latlej1 18081 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → 𝑧 ≤ (𝑧 ∨ 𝑟)) |
68 | 62, 64, 66, 67 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑧 ≤ (𝑧 ∨ 𝑟)) |
69 | | simpr3r 1233 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑋 = (𝑧 ∨ 𝑟)) |
70 | 68, 69 | breqtrrd 5098 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑧 ≤ 𝑋) |
71 | | simplr 765 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑄 ≤ 𝑋) |
72 | | simpll3 1212 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑄 ∈ 𝐴) |
73 | 72, 38 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑄 ∈ (Base‘𝐾)) |
74 | | simpll2 1211 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑋 ∈ 𝑃) |
75 | 74, 5 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑋 ∈ (Base‘𝐾)) |
76 | 3, 7, 8 | latjle12 18083 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾))) → ((𝑧 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋) ↔ (𝑧 ∨ 𝑄) ≤ 𝑋)) |
77 | 62, 64, 73, 75, 76 | syl13anc 1370 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → ((𝑧 ≤ 𝑋 ∧ 𝑄 ≤ 𝑋) ↔ (𝑧 ∨ 𝑄) ≤ 𝑋)) |
78 | 70, 71, 77 | mpbi2and 708 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → (𝑧 ∨ 𝑄) ≤ 𝑋) |
79 | 3, 8 | latjcl 18072 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑧 ∨ 𝑄) ∈ (Base‘𝐾)) |
80 | 62, 64, 73, 79 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → (𝑧 ∨ 𝑄) ∈ (Base‘𝐾)) |
81 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) |
82 | 3, 7, 8, 81, 9 | cvr1 37351 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑄 ∈ 𝐴) → (¬ 𝑄 ≤ 𝑧 ↔ 𝑧( ⋖ ‘𝐾)(𝑧 ∨ 𝑄))) |
83 | 61, 64, 72, 82 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → (¬ 𝑄 ≤ 𝑧 ↔ 𝑧( ⋖ ‘𝐾)(𝑧 ∨ 𝑄))) |
84 | 60, 83 | mpbid 231 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑧( ⋖ ‘𝐾)(𝑧 ∨ 𝑄)) |
85 | 3, 81, 10, 4 | lplni 37473 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑧 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑧 ∈ 𝑁) ∧ 𝑧( ⋖ ‘𝐾)(𝑧 ∨ 𝑄)) → (𝑧 ∨ 𝑄) ∈ 𝑃) |
86 | 61, 80, 59, 84, 85 | syl31anc 1371 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → (𝑧 ∨ 𝑄) ∈ 𝑃) |
87 | 7, 4 | lplncmp 37503 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑧 ∨ 𝑄) ∈ 𝑃 ∧ 𝑋 ∈ 𝑃) → ((𝑧 ∨ 𝑄) ≤ 𝑋 ↔ (𝑧 ∨ 𝑄) = 𝑋)) |
88 | 61, 86, 74, 87 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → ((𝑧 ∨ 𝑄) ≤ 𝑋 ↔ (𝑧 ∨ 𝑄) = 𝑋)) |
89 | 78, 88 | mpbid 231 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → (𝑧 ∨ 𝑄) = 𝑋) |
90 | 89 | eqcomd 2744 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → 𝑋 = (𝑧 ∨ 𝑄)) |
91 | | breq2 5074 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝑄 ≤ 𝑦 ↔ 𝑄 ≤ 𝑧)) |
92 | 91 | notbid 317 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (¬ 𝑄 ≤ 𝑦 ↔ ¬ 𝑄 ≤ 𝑧)) |
93 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝑦 ∨ 𝑄) = (𝑧 ∨ 𝑄)) |
94 | 93 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝑋 = (𝑦 ∨ 𝑄) ↔ 𝑋 = (𝑧 ∨ 𝑄))) |
95 | 92, 94 | anbi12d 630 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → ((¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)) ↔ (¬ 𝑄 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑄)))) |
96 | 95 | rspcev 3552 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑁 ∧ (¬ 𝑄 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑄))) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))) |
97 | 59, 60, 90, 96 | syl12anc 833 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) ∧ (¬ 𝑄 ≤ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) ∧ (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)))) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))) |
98 | 97 | 3exp2 1352 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → (¬ 𝑄 ≤ 𝑧 → ((𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) → ((¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))))) |
99 | 58, 98 | pm2.61d 179 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → ((𝑧 ∈ 𝑁 ∧ 𝑟 ∈ 𝐴) → ((¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))))) |
100 | 99 | rexlimdvv 3221 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → (∃𝑧 ∈ 𝑁 ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑟)) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))) |
101 | 13, 100 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≤ 𝑋) → ∃𝑦 ∈ 𝑁 (¬ 𝑄 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))) |