Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnexllnN Structured version   Visualization version   GIF version

Theorem lplnexllnN 39662
Description: Given an atom on a lattice plane, there is a lattice line whose join with the atom equals the plane. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lplnexat.l = (le‘𝐾)
lplnexat.j = (join‘𝐾)
lplnexat.a 𝐴 = (Atoms‘𝐾)
lplnexat.n 𝑁 = (LLines‘𝐾)
lplnexat.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnexllnN (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
Distinct variable groups:   𝑦,   𝑦,   𝑦,𝑁   𝑦,𝑄   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝑃(𝑦)   𝐾(𝑦)

Proof of Theorem lplnexllnN
Dummy variables 𝑠 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1193 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → 𝑋𝑃)
2 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → 𝐾 ∈ HL)
3 eqid 2731 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 lplnexat.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
53, 4lplnbase 39632 . . . . 5 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
61, 5syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → 𝑋 ∈ (Base‘𝐾))
7 lplnexat.l . . . . 5 = (le‘𝐾)
8 lplnexat.j . . . . 5 = (join‘𝐾)
9 lplnexat.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 lplnexat.n . . . . 5 𝑁 = (LLines‘𝐾)
113, 7, 8, 9, 10, 4islpln3 39631 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑃 ↔ ∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟))))
122, 6, 11syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (𝑋𝑃 ↔ ∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟))))
131, 12mpbid 232 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟)))
14 simpll1 1213 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝐾 ∈ HL)
15 simpr2l 1233 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧𝑁)
16 simpll3 1215 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄𝐴)
17 simpr1 1195 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄 𝑧)
187, 8, 9, 10llnexatN 39619 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑧𝑁𝑄𝐴) ∧ 𝑄 𝑧) → ∃𝑠𝐴 (𝑄𝑠𝑧 = (𝑄 𝑠)))
1914, 15, 16, 17, 18syl31anc 1375 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ∃𝑠𝐴 (𝑄𝑠𝑧 = (𝑄 𝑠)))
20 simp1l1 1267 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝐾 ∈ HL)
21 simp22r 1294 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑟𝐴)
22 simp3l 1202 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑠𝐴)
23 simp1l3 1269 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑄𝐴)
24 simp23l 1295 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ¬ 𝑟 𝑧)
25 simp3rr 1248 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑧 = (𝑄 𝑠))
2625breq2d 5101 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → (𝑟 𝑧𝑟 (𝑄 𝑠)))
2724, 26mtbid 324 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ¬ 𝑟 (𝑄 𝑠))
287, 8, 9atnlej2 39478 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑠𝐴) ∧ ¬ 𝑟 (𝑄 𝑠)) → 𝑟𝑠)
2920, 21, 23, 22, 27, 28syl131anc 1385 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑟𝑠)
308, 9, 10llni2 39610 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑟𝐴𝑠𝐴) ∧ 𝑟𝑠) → (𝑟 𝑠) ∈ 𝑁)
3120, 21, 22, 29, 30syl31anc 1375 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → (𝑟 𝑠) ∈ 𝑁)
32 simp3rl 1247 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑄𝑠)
337, 8, 9hlatcon2 39550 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑠𝐴𝑟𝐴) ∧ (𝑄𝑠 ∧ ¬ 𝑟 (𝑄 𝑠))) → ¬ 𝑄 (𝑟 𝑠))
3420, 23, 22, 21, 32, 27, 33syl132anc 1390 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ¬ 𝑄 (𝑟 𝑠))
35 simp23r 1296 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑋 = (𝑧 𝑟))
3625oveq1d 7361 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → (𝑧 𝑟) = ((𝑄 𝑠) 𝑟))
3720hllatd 39462 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝐾 ∈ Lat)
383, 9atbase 39387 . . . . . . . . . . . . 13 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3923, 38syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑄 ∈ (Base‘𝐾))
403, 9atbase 39387 . . . . . . . . . . . . 13 (𝑠𝐴𝑠 ∈ (Base‘𝐾))
4122, 40syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑠 ∈ (Base‘𝐾))
423, 9atbase 39387 . . . . . . . . . . . . 13 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
4321, 42syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑟 ∈ (Base‘𝐾))
443, 8latj31 18393 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾))) → ((𝑄 𝑠) 𝑟) = ((𝑟 𝑠) 𝑄))
4537, 39, 41, 43, 44syl13anc 1374 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ((𝑄 𝑠) 𝑟) = ((𝑟 𝑠) 𝑄))
4635, 36, 453eqtrd 2770 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑋 = ((𝑟 𝑠) 𝑄))
47 breq2 5093 . . . . . . . . . . . . 13 (𝑦 = (𝑟 𝑠) → (𝑄 𝑦𝑄 (𝑟 𝑠)))
4847notbid 318 . . . . . . . . . . . 12 (𝑦 = (𝑟 𝑠) → (¬ 𝑄 𝑦 ↔ ¬ 𝑄 (𝑟 𝑠)))
49 oveq1 7353 . . . . . . . . . . . . 13 (𝑦 = (𝑟 𝑠) → (𝑦 𝑄) = ((𝑟 𝑠) 𝑄))
5049eqeq2d 2742 . . . . . . . . . . . 12 (𝑦 = (𝑟 𝑠) → (𝑋 = (𝑦 𝑄) ↔ 𝑋 = ((𝑟 𝑠) 𝑄)))
5148, 50anbi12d 632 . . . . . . . . . . 11 (𝑦 = (𝑟 𝑠) → ((¬ 𝑄 𝑦𝑋 = (𝑦 𝑄)) ↔ (¬ 𝑄 (𝑟 𝑠) ∧ 𝑋 = ((𝑟 𝑠) 𝑄))))
5251rspcev 3572 . . . . . . . . . 10 (((𝑟 𝑠) ∈ 𝑁 ∧ (¬ 𝑄 (𝑟 𝑠) ∧ 𝑋 = ((𝑟 𝑠) 𝑄))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
5331, 34, 46, 52syl12anc 836 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
54533expia 1121 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ((𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))
5554expd 415 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑠𝐴 → ((𝑄𝑠𝑧 = (𝑄 𝑠)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))))
5655rexlimdv 3131 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (∃𝑠𝐴 (𝑄𝑠𝑧 = (𝑄 𝑠)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))
5719, 56mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
58573exp2 1355 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (𝑄 𝑧 → ((𝑧𝑁𝑟𝐴) → ((¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))))
59 simpr2l 1233 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧𝑁)
60 simpr1 1195 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ¬ 𝑄 𝑧)
61 simpll1 1213 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝐾 ∈ HL)
6261hllatd 39462 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝐾 ∈ Lat)
633, 10llnbase 39607 . . . . . . . . . . . 12 (𝑧𝑁𝑧 ∈ (Base‘𝐾))
6459, 63syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧 ∈ (Base‘𝐾))
65 simpr2r 1234 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑟𝐴)
6665, 42syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑟 ∈ (Base‘𝐾))
673, 7, 8latlej1 18354 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → 𝑧 (𝑧 𝑟))
6862, 64, 66, 67syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧 (𝑧 𝑟))
69 simpr3r 1236 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋 = (𝑧 𝑟))
7068, 69breqtrrd 5117 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧 𝑋)
71 simplr 768 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄 𝑋)
72 simpll3 1215 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄𝐴)
7372, 38syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄 ∈ (Base‘𝐾))
74 simpll2 1214 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋𝑃)
7574, 5syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋 ∈ (Base‘𝐾))
763, 7, 8latjle12 18356 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾))) → ((𝑧 𝑋𝑄 𝑋) ↔ (𝑧 𝑄) 𝑋))
7762, 64, 73, 75, 76syl13anc 1374 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ((𝑧 𝑋𝑄 𝑋) ↔ (𝑧 𝑄) 𝑋))
7870, 71, 77mpbi2and 712 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) 𝑋)
793, 8latjcl 18345 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑧 𝑄) ∈ (Base‘𝐾))
8062, 64, 73, 79syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) ∈ (Base‘𝐾))
81 eqid 2731 . . . . . . . . . . . . 13 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
823, 7, 8, 81, 9cvr1 39508 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑄𝐴) → (¬ 𝑄 𝑧𝑧( ⋖ ‘𝐾)(𝑧 𝑄)))
8361, 64, 72, 82syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (¬ 𝑄 𝑧𝑧( ⋖ ‘𝐾)(𝑧 𝑄)))
8460, 83mpbid 232 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧( ⋖ ‘𝐾)(𝑧 𝑄))
853, 81, 10, 4lplni 39630 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑧 𝑄) ∈ (Base‘𝐾) ∧ 𝑧𝑁) ∧ 𝑧( ⋖ ‘𝐾)(𝑧 𝑄)) → (𝑧 𝑄) ∈ 𝑃)
8661, 80, 59, 84, 85syl31anc 1375 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) ∈ 𝑃)
877, 4lplncmp 39660 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑧 𝑄) ∈ 𝑃𝑋𝑃) → ((𝑧 𝑄) 𝑋 ↔ (𝑧 𝑄) = 𝑋))
8861, 86, 74, 87syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ((𝑧 𝑄) 𝑋 ↔ (𝑧 𝑄) = 𝑋))
8978, 88mpbid 232 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) = 𝑋)
9089eqcomd 2737 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋 = (𝑧 𝑄))
91 breq2 5093 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑄 𝑦𝑄 𝑧))
9291notbid 318 . . . . . . . 8 (𝑦 = 𝑧 → (¬ 𝑄 𝑦 ↔ ¬ 𝑄 𝑧))
93 oveq1 7353 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦 𝑄) = (𝑧 𝑄))
9493eqeq2d 2742 . . . . . . . 8 (𝑦 = 𝑧 → (𝑋 = (𝑦 𝑄) ↔ 𝑋 = (𝑧 𝑄)))
9592, 94anbi12d 632 . . . . . . 7 (𝑦 = 𝑧 → ((¬ 𝑄 𝑦𝑋 = (𝑦 𝑄)) ↔ (¬ 𝑄 𝑧𝑋 = (𝑧 𝑄))))
9695rspcev 3572 . . . . . 6 ((𝑧𝑁 ∧ (¬ 𝑄 𝑧𝑋 = (𝑧 𝑄))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
9759, 60, 90, 96syl12anc 836 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
98973exp2 1355 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (¬ 𝑄 𝑧 → ((𝑧𝑁𝑟𝐴) → ((¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))))
9958, 98pm2.61d 179 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ((𝑧𝑁𝑟𝐴) → ((¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))))
10099rexlimdvv 3188 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))
10113, 100mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  Latclat 18337  ccvr 39360  Atomscatm 39361  HLchlt 39448  LLinesclln 39589  LPlanesclpl 39590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39274  df-ol 39276  df-oml 39277  df-covers 39364  df-ats 39365  df-atl 39396  df-cvlat 39420  df-hlat 39449  df-llines 39596  df-lplanes 39597
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator