Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnexllnN Structured version   Visualization version   GIF version

Theorem lplnexllnN 38423
Description: Given an atom on a lattice plane, there is a lattice line whose join with the atom equals the plane. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lplnexat.l ≀ = (leβ€˜πΎ)
lplnexat.j ∨ = (joinβ€˜πΎ)
lplnexat.a 𝐴 = (Atomsβ€˜πΎ)
lplnexat.n 𝑁 = (LLinesβ€˜πΎ)
lplnexat.p 𝑃 = (LPlanesβ€˜πΎ)
Assertion
Ref Expression
lplnexllnN (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) β†’ βˆƒπ‘¦ ∈ 𝑁 (Β¬ 𝑄 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))
Distinct variable groups:   𝑦, ∨   𝑦, ≀   𝑦,𝑁   𝑦,𝑄   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝑃(𝑦)   𝐾(𝑦)

Proof of Theorem lplnexllnN
Dummy variables 𝑠 π‘Ÿ 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1192 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) β†’ 𝑋 ∈ 𝑃)
2 simpl1 1191 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) β†’ 𝐾 ∈ HL)
3 eqid 2732 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
4 lplnexat.p . . . . . 6 𝑃 = (LPlanesβ€˜πΎ)
53, 4lplnbase 38393 . . . . 5 (𝑋 ∈ 𝑃 β†’ 𝑋 ∈ (Baseβ€˜πΎ))
61, 5syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) β†’ 𝑋 ∈ (Baseβ€˜πΎ))
7 lplnexat.l . . . . 5 ≀ = (leβ€˜πΎ)
8 lplnexat.j . . . . 5 ∨ = (joinβ€˜πΎ)
9 lplnexat.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
10 lplnexat.n . . . . 5 𝑁 = (LLinesβ€˜πΎ)
113, 7, 8, 9, 10, 4islpln3 38392 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Baseβ€˜πΎ)) β†’ (𝑋 ∈ 𝑃 ↔ βˆƒπ‘§ ∈ 𝑁 βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))))
122, 6, 11syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) β†’ (𝑋 ∈ 𝑃 ↔ βˆƒπ‘§ ∈ 𝑁 βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))))
131, 12mpbid 231 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) β†’ βˆƒπ‘§ ∈ 𝑁 βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))
14 simpll1 1212 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ 𝐾 ∈ HL)
15 simpr2l 1232 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ 𝑧 ∈ 𝑁)
16 simpll3 1214 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ 𝑄 ∈ 𝐴)
17 simpr1 1194 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ 𝑄 ≀ 𝑧)
187, 8, 9, 10llnexatN 38380 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑧 ∈ 𝑁 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑧) β†’ βˆƒπ‘  ∈ 𝐴 (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))
1914, 15, 16, 17, 18syl31anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ βˆƒπ‘  ∈ 𝐴 (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))
20 simp1l1 1266 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ 𝐾 ∈ HL)
21 simp22r 1293 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ π‘Ÿ ∈ 𝐴)
22 simp3l 1201 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ 𝑠 ∈ 𝐴)
23 simp1l3 1268 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ 𝑄 ∈ 𝐴)
24 simp23l 1294 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ Β¬ π‘Ÿ ≀ 𝑧)
25 simp3rr 1247 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ 𝑧 = (𝑄 ∨ 𝑠))
2625breq2d 5159 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ (π‘Ÿ ≀ 𝑧 ↔ π‘Ÿ ≀ (𝑄 ∨ 𝑠)))
2724, 26mtbid 323 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ Β¬ π‘Ÿ ≀ (𝑄 ∨ 𝑠))
287, 8, 9atnlej2 38239 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (π‘Ÿ ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ Β¬ π‘Ÿ ≀ (𝑄 ∨ 𝑠)) β†’ π‘Ÿ β‰  𝑠)
2920, 21, 23, 22, 27, 28syl131anc 1383 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ π‘Ÿ β‰  𝑠)
308, 9, 10llni2 38371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Ÿ ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ π‘Ÿ β‰  𝑠) β†’ (π‘Ÿ ∨ 𝑠) ∈ 𝑁)
3120, 21, 22, 29, 30syl31anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ (π‘Ÿ ∨ 𝑠) ∈ 𝑁)
32 simp3rl 1246 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ 𝑄 β‰  𝑠)
337, 8, 9hlatcon2 38311 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴) ∧ (𝑄 β‰  𝑠 ∧ Β¬ π‘Ÿ ≀ (𝑄 ∨ 𝑠))) β†’ Β¬ 𝑄 ≀ (π‘Ÿ ∨ 𝑠))
3420, 23, 22, 21, 32, 27, 33syl132anc 1388 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ Β¬ 𝑄 ≀ (π‘Ÿ ∨ 𝑠))
35 simp23r 1295 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ 𝑋 = (𝑧 ∨ π‘Ÿ))
3625oveq1d 7420 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ (𝑧 ∨ π‘Ÿ) = ((𝑄 ∨ 𝑠) ∨ π‘Ÿ))
3720hllatd 38222 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ 𝐾 ∈ Lat)
383, 9atbase 38147 . . . . . . . . . . . . 13 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
3923, 38syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
403, 9atbase 38147 . . . . . . . . . . . . 13 (𝑠 ∈ 𝐴 β†’ 𝑠 ∈ (Baseβ€˜πΎ))
4122, 40syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ 𝑠 ∈ (Baseβ€˜πΎ))
423, 9atbase 38147 . . . . . . . . . . . . 13 (π‘Ÿ ∈ 𝐴 β†’ π‘Ÿ ∈ (Baseβ€˜πΎ))
4321, 42syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ π‘Ÿ ∈ (Baseβ€˜πΎ))
443, 8latj31 18436 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑠 ∈ (Baseβ€˜πΎ) ∧ π‘Ÿ ∈ (Baseβ€˜πΎ))) β†’ ((𝑄 ∨ 𝑠) ∨ π‘Ÿ) = ((π‘Ÿ ∨ 𝑠) ∨ 𝑄))
4537, 39, 41, 43, 44syl13anc 1372 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ ((𝑄 ∨ 𝑠) ∨ π‘Ÿ) = ((π‘Ÿ ∨ 𝑠) ∨ 𝑄))
4635, 36, 453eqtrd 2776 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ 𝑋 = ((π‘Ÿ ∨ 𝑠) ∨ 𝑄))
47 breq2 5151 . . . . . . . . . . . . 13 (𝑦 = (π‘Ÿ ∨ 𝑠) β†’ (𝑄 ≀ 𝑦 ↔ 𝑄 ≀ (π‘Ÿ ∨ 𝑠)))
4847notbid 317 . . . . . . . . . . . 12 (𝑦 = (π‘Ÿ ∨ 𝑠) β†’ (Β¬ 𝑄 ≀ 𝑦 ↔ Β¬ 𝑄 ≀ (π‘Ÿ ∨ 𝑠)))
49 oveq1 7412 . . . . . . . . . . . . 13 (𝑦 = (π‘Ÿ ∨ 𝑠) β†’ (𝑦 ∨ 𝑄) = ((π‘Ÿ ∨ 𝑠) ∨ 𝑄))
5049eqeq2d 2743 . . . . . . . . . . . 12 (𝑦 = (π‘Ÿ ∨ 𝑠) β†’ (𝑋 = (𝑦 ∨ 𝑄) ↔ 𝑋 = ((π‘Ÿ ∨ 𝑠) ∨ 𝑄)))
5148, 50anbi12d 631 . . . . . . . . . . 11 (𝑦 = (π‘Ÿ ∨ 𝑠) β†’ ((Β¬ 𝑄 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)) ↔ (Β¬ 𝑄 ≀ (π‘Ÿ ∨ 𝑠) ∧ 𝑋 = ((π‘Ÿ ∨ 𝑠) ∨ 𝑄))))
5251rspcev 3612 . . . . . . . . . 10 (((π‘Ÿ ∨ 𝑠) ∈ 𝑁 ∧ (Β¬ 𝑄 ≀ (π‘Ÿ ∨ 𝑠) ∧ 𝑋 = ((π‘Ÿ ∨ 𝑠) ∨ 𝑄))) β†’ βˆƒπ‘¦ ∈ 𝑁 (Β¬ 𝑄 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))
5331, 34, 46, 52syl12anc 835 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)))) β†’ βˆƒπ‘¦ ∈ 𝑁 (Β¬ 𝑄 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))
54533expia 1121 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ ((𝑠 ∈ 𝐴 ∧ (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠))) β†’ βˆƒπ‘¦ ∈ 𝑁 (Β¬ 𝑄 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))))
5554expd 416 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ (𝑠 ∈ 𝐴 β†’ ((𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)) β†’ βˆƒπ‘¦ ∈ 𝑁 (Β¬ 𝑄 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))))
5655rexlimdv 3153 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ (βˆƒπ‘  ∈ 𝐴 (𝑄 β‰  𝑠 ∧ 𝑧 = (𝑄 ∨ 𝑠)) β†’ βˆƒπ‘¦ ∈ 𝑁 (Β¬ 𝑄 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))))
5719, 56mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ βˆƒπ‘¦ ∈ 𝑁 (Β¬ 𝑄 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))
58573exp2 1354 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) β†’ (𝑄 ≀ 𝑧 β†’ ((𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) β†’ ((Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)) β†’ βˆƒπ‘¦ ∈ 𝑁 (Β¬ 𝑄 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))))))
59 simpr2l 1232 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ 𝑧 ∈ 𝑁)
60 simpr1 1194 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ Β¬ 𝑄 ≀ 𝑧)
61 simpll1 1212 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ 𝐾 ∈ HL)
6261hllatd 38222 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ 𝐾 ∈ Lat)
633, 10llnbase 38368 . . . . . . . . . . . 12 (𝑧 ∈ 𝑁 β†’ 𝑧 ∈ (Baseβ€˜πΎ))
6459, 63syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ 𝑧 ∈ (Baseβ€˜πΎ))
65 simpr2r 1233 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ π‘Ÿ ∈ 𝐴)
6665, 42syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ π‘Ÿ ∈ (Baseβ€˜πΎ))
673, 7, 8latlej1 18397 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑧 ∈ (Baseβ€˜πΎ) ∧ π‘Ÿ ∈ (Baseβ€˜πΎ)) β†’ 𝑧 ≀ (𝑧 ∨ π‘Ÿ))
6862, 64, 66, 67syl3anc 1371 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ 𝑧 ≀ (𝑧 ∨ π‘Ÿ))
69 simpr3r 1235 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ 𝑋 = (𝑧 ∨ π‘Ÿ))
7068, 69breqtrrd 5175 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ 𝑧 ≀ 𝑋)
71 simplr 767 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ 𝑄 ≀ 𝑋)
72 simpll3 1214 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ 𝑄 ∈ 𝐴)
7372, 38syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
74 simpll2 1213 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ 𝑋 ∈ 𝑃)
7574, 5syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ 𝑋 ∈ (Baseβ€˜πΎ))
763, 7, 8latjle12 18399 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑋 ∈ (Baseβ€˜πΎ))) β†’ ((𝑧 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋) ↔ (𝑧 ∨ 𝑄) ≀ 𝑋))
7762, 64, 73, 75, 76syl13anc 1372 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ ((𝑧 ≀ 𝑋 ∧ 𝑄 ≀ 𝑋) ↔ (𝑧 ∨ 𝑄) ≀ 𝑋))
7870, 71, 77mpbi2and 710 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ (𝑧 ∨ 𝑄) ≀ 𝑋)
793, 8latjcl 18388 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑧 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) β†’ (𝑧 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
8062, 64, 73, 79syl3anc 1371 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ (𝑧 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
81 eqid 2732 . . . . . . . . . . . . 13 ( β‹– β€˜πΎ) = ( β‹– β€˜πΎ)
823, 7, 8, 81, 9cvr1 38269 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑧 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ 𝐴) β†’ (Β¬ 𝑄 ≀ 𝑧 ↔ 𝑧( β‹– β€˜πΎ)(𝑧 ∨ 𝑄)))
8361, 64, 72, 82syl3anc 1371 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ (Β¬ 𝑄 ≀ 𝑧 ↔ 𝑧( β‹– β€˜πΎ)(𝑧 ∨ 𝑄)))
8460, 83mpbid 231 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ 𝑧( β‹– β€˜πΎ)(𝑧 ∨ 𝑄))
853, 81, 10, 4lplni 38391 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑧 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑧 ∈ 𝑁) ∧ 𝑧( β‹– β€˜πΎ)(𝑧 ∨ 𝑄)) β†’ (𝑧 ∨ 𝑄) ∈ 𝑃)
8661, 80, 59, 84, 85syl31anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ (𝑧 ∨ 𝑄) ∈ 𝑃)
877, 4lplncmp 38421 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑧 ∨ 𝑄) ∈ 𝑃 ∧ 𝑋 ∈ 𝑃) β†’ ((𝑧 ∨ 𝑄) ≀ 𝑋 ↔ (𝑧 ∨ 𝑄) = 𝑋))
8861, 86, 74, 87syl3anc 1371 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ ((𝑧 ∨ 𝑄) ≀ 𝑋 ↔ (𝑧 ∨ 𝑄) = 𝑋))
8978, 88mpbid 231 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ (𝑧 ∨ 𝑄) = 𝑋)
9089eqcomd 2738 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ 𝑋 = (𝑧 ∨ 𝑄))
91 breq2 5151 . . . . . . . . 9 (𝑦 = 𝑧 β†’ (𝑄 ≀ 𝑦 ↔ 𝑄 ≀ 𝑧))
9291notbid 317 . . . . . . . 8 (𝑦 = 𝑧 β†’ (Β¬ 𝑄 ≀ 𝑦 ↔ Β¬ 𝑄 ≀ 𝑧))
93 oveq1 7412 . . . . . . . . 9 (𝑦 = 𝑧 β†’ (𝑦 ∨ 𝑄) = (𝑧 ∨ 𝑄))
9493eqeq2d 2743 . . . . . . . 8 (𝑦 = 𝑧 β†’ (𝑋 = (𝑦 ∨ 𝑄) ↔ 𝑋 = (𝑧 ∨ 𝑄)))
9592, 94anbi12d 631 . . . . . . 7 (𝑦 = 𝑧 β†’ ((Β¬ 𝑄 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)) ↔ (Β¬ 𝑄 ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑄))))
9695rspcev 3612 . . . . . 6 ((𝑧 ∈ 𝑁 ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ 𝑄))) β†’ βˆƒπ‘¦ ∈ 𝑁 (Β¬ 𝑄 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))
9759, 60, 90, 96syl12anc 835 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) ∧ (Β¬ 𝑄 ≀ 𝑧 ∧ (𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) ∧ (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)))) β†’ βˆƒπ‘¦ ∈ 𝑁 (Β¬ 𝑄 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))
98973exp2 1354 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) β†’ (Β¬ 𝑄 ≀ 𝑧 β†’ ((𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) β†’ ((Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)) β†’ βˆƒπ‘¦ ∈ 𝑁 (Β¬ 𝑄 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))))))
9958, 98pm2.61d 179 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) β†’ ((𝑧 ∈ 𝑁 ∧ π‘Ÿ ∈ 𝐴) β†’ ((Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)) β†’ βˆƒπ‘¦ ∈ 𝑁 (Β¬ 𝑄 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))))
10099rexlimdvv 3210 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) β†’ (βˆƒπ‘§ ∈ 𝑁 βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ 𝑧 ∧ 𝑋 = (𝑧 ∨ π‘Ÿ)) β†’ βˆƒπ‘¦ ∈ 𝑁 (Β¬ 𝑄 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄))))
10113, 100mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) ∧ 𝑄 ≀ 𝑋) β†’ βˆƒπ‘¦ ∈ 𝑁 (Β¬ 𝑄 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  Latclat 18380   β‹– ccvr 38120  Atomscatm 38121  HLchlt 38208  LLinesclln 38350  LPlanesclpl 38351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357  df-lplanes 38358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator