Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnexllnN Structured version   Visualization version   GIF version

Theorem lplnexllnN 39551
Description: Given an atom on a lattice plane, there is a lattice line whose join with the atom equals the plane. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lplnexat.l = (le‘𝐾)
lplnexat.j = (join‘𝐾)
lplnexat.a 𝐴 = (Atoms‘𝐾)
lplnexat.n 𝑁 = (LLines‘𝐾)
lplnexat.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnexllnN (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
Distinct variable groups:   𝑦,   𝑦,   𝑦,𝑁   𝑦,𝑄   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝑃(𝑦)   𝐾(𝑦)

Proof of Theorem lplnexllnN
Dummy variables 𝑠 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1193 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → 𝑋𝑃)
2 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → 𝐾 ∈ HL)
3 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 lplnexat.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
53, 4lplnbase 39521 . . . . 5 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
61, 5syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → 𝑋 ∈ (Base‘𝐾))
7 lplnexat.l . . . . 5 = (le‘𝐾)
8 lplnexat.j . . . . 5 = (join‘𝐾)
9 lplnexat.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 lplnexat.n . . . . 5 𝑁 = (LLines‘𝐾)
113, 7, 8, 9, 10, 4islpln3 39520 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑃 ↔ ∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟))))
122, 6, 11syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (𝑋𝑃 ↔ ∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟))))
131, 12mpbid 232 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟)))
14 simpll1 1213 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝐾 ∈ HL)
15 simpr2l 1233 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧𝑁)
16 simpll3 1215 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄𝐴)
17 simpr1 1195 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄 𝑧)
187, 8, 9, 10llnexatN 39508 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑧𝑁𝑄𝐴) ∧ 𝑄 𝑧) → ∃𝑠𝐴 (𝑄𝑠𝑧 = (𝑄 𝑠)))
1914, 15, 16, 17, 18syl31anc 1375 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ∃𝑠𝐴 (𝑄𝑠𝑧 = (𝑄 𝑠)))
20 simp1l1 1267 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝐾 ∈ HL)
21 simp22r 1294 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑟𝐴)
22 simp3l 1202 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑠𝐴)
23 simp1l3 1269 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑄𝐴)
24 simp23l 1295 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ¬ 𝑟 𝑧)
25 simp3rr 1248 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑧 = (𝑄 𝑠))
2625breq2d 5114 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → (𝑟 𝑧𝑟 (𝑄 𝑠)))
2724, 26mtbid 324 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ¬ 𝑟 (𝑄 𝑠))
287, 8, 9atnlej2 39367 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑠𝐴) ∧ ¬ 𝑟 (𝑄 𝑠)) → 𝑟𝑠)
2920, 21, 23, 22, 27, 28syl131anc 1385 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑟𝑠)
308, 9, 10llni2 39499 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑟𝐴𝑠𝐴) ∧ 𝑟𝑠) → (𝑟 𝑠) ∈ 𝑁)
3120, 21, 22, 29, 30syl31anc 1375 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → (𝑟 𝑠) ∈ 𝑁)
32 simp3rl 1247 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑄𝑠)
337, 8, 9hlatcon2 39439 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑠𝐴𝑟𝐴) ∧ (𝑄𝑠 ∧ ¬ 𝑟 (𝑄 𝑠))) → ¬ 𝑄 (𝑟 𝑠))
3420, 23, 22, 21, 32, 27, 33syl132anc 1390 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ¬ 𝑄 (𝑟 𝑠))
35 simp23r 1296 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑋 = (𝑧 𝑟))
3625oveq1d 7384 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → (𝑧 𝑟) = ((𝑄 𝑠) 𝑟))
3720hllatd 39350 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝐾 ∈ Lat)
383, 9atbase 39275 . . . . . . . . . . . . 13 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3923, 38syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑄 ∈ (Base‘𝐾))
403, 9atbase 39275 . . . . . . . . . . . . 13 (𝑠𝐴𝑠 ∈ (Base‘𝐾))
4122, 40syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑠 ∈ (Base‘𝐾))
423, 9atbase 39275 . . . . . . . . . . . . 13 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
4321, 42syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑟 ∈ (Base‘𝐾))
443, 8latj31 18428 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾))) → ((𝑄 𝑠) 𝑟) = ((𝑟 𝑠) 𝑄))
4537, 39, 41, 43, 44syl13anc 1374 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ((𝑄 𝑠) 𝑟) = ((𝑟 𝑠) 𝑄))
4635, 36, 453eqtrd 2768 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑋 = ((𝑟 𝑠) 𝑄))
47 breq2 5106 . . . . . . . . . . . . 13 (𝑦 = (𝑟 𝑠) → (𝑄 𝑦𝑄 (𝑟 𝑠)))
4847notbid 318 . . . . . . . . . . . 12 (𝑦 = (𝑟 𝑠) → (¬ 𝑄 𝑦 ↔ ¬ 𝑄 (𝑟 𝑠)))
49 oveq1 7376 . . . . . . . . . . . . 13 (𝑦 = (𝑟 𝑠) → (𝑦 𝑄) = ((𝑟 𝑠) 𝑄))
5049eqeq2d 2740 . . . . . . . . . . . 12 (𝑦 = (𝑟 𝑠) → (𝑋 = (𝑦 𝑄) ↔ 𝑋 = ((𝑟 𝑠) 𝑄)))
5148, 50anbi12d 632 . . . . . . . . . . 11 (𝑦 = (𝑟 𝑠) → ((¬ 𝑄 𝑦𝑋 = (𝑦 𝑄)) ↔ (¬ 𝑄 (𝑟 𝑠) ∧ 𝑋 = ((𝑟 𝑠) 𝑄))))
5251rspcev 3585 . . . . . . . . . 10 (((𝑟 𝑠) ∈ 𝑁 ∧ (¬ 𝑄 (𝑟 𝑠) ∧ 𝑋 = ((𝑟 𝑠) 𝑄))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
5331, 34, 46, 52syl12anc 836 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
54533expia 1121 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ((𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))
5554expd 415 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑠𝐴 → ((𝑄𝑠𝑧 = (𝑄 𝑠)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))))
5655rexlimdv 3132 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (∃𝑠𝐴 (𝑄𝑠𝑧 = (𝑄 𝑠)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))
5719, 56mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
58573exp2 1355 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (𝑄 𝑧 → ((𝑧𝑁𝑟𝐴) → ((¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))))
59 simpr2l 1233 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧𝑁)
60 simpr1 1195 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ¬ 𝑄 𝑧)
61 simpll1 1213 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝐾 ∈ HL)
6261hllatd 39350 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝐾 ∈ Lat)
633, 10llnbase 39496 . . . . . . . . . . . 12 (𝑧𝑁𝑧 ∈ (Base‘𝐾))
6459, 63syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧 ∈ (Base‘𝐾))
65 simpr2r 1234 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑟𝐴)
6665, 42syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑟 ∈ (Base‘𝐾))
673, 7, 8latlej1 18389 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → 𝑧 (𝑧 𝑟))
6862, 64, 66, 67syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧 (𝑧 𝑟))
69 simpr3r 1236 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋 = (𝑧 𝑟))
7068, 69breqtrrd 5130 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧 𝑋)
71 simplr 768 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄 𝑋)
72 simpll3 1215 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄𝐴)
7372, 38syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄 ∈ (Base‘𝐾))
74 simpll2 1214 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋𝑃)
7574, 5syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋 ∈ (Base‘𝐾))
763, 7, 8latjle12 18391 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾))) → ((𝑧 𝑋𝑄 𝑋) ↔ (𝑧 𝑄) 𝑋))
7762, 64, 73, 75, 76syl13anc 1374 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ((𝑧 𝑋𝑄 𝑋) ↔ (𝑧 𝑄) 𝑋))
7870, 71, 77mpbi2and 712 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) 𝑋)
793, 8latjcl 18380 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑧 𝑄) ∈ (Base‘𝐾))
8062, 64, 73, 79syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) ∈ (Base‘𝐾))
81 eqid 2729 . . . . . . . . . . . . 13 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
823, 7, 8, 81, 9cvr1 39397 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑄𝐴) → (¬ 𝑄 𝑧𝑧( ⋖ ‘𝐾)(𝑧 𝑄)))
8361, 64, 72, 82syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (¬ 𝑄 𝑧𝑧( ⋖ ‘𝐾)(𝑧 𝑄)))
8460, 83mpbid 232 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧( ⋖ ‘𝐾)(𝑧 𝑄))
853, 81, 10, 4lplni 39519 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑧 𝑄) ∈ (Base‘𝐾) ∧ 𝑧𝑁) ∧ 𝑧( ⋖ ‘𝐾)(𝑧 𝑄)) → (𝑧 𝑄) ∈ 𝑃)
8661, 80, 59, 84, 85syl31anc 1375 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) ∈ 𝑃)
877, 4lplncmp 39549 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑧 𝑄) ∈ 𝑃𝑋𝑃) → ((𝑧 𝑄) 𝑋 ↔ (𝑧 𝑄) = 𝑋))
8861, 86, 74, 87syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ((𝑧 𝑄) 𝑋 ↔ (𝑧 𝑄) = 𝑋))
8978, 88mpbid 232 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) = 𝑋)
9089eqcomd 2735 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋 = (𝑧 𝑄))
91 breq2 5106 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑄 𝑦𝑄 𝑧))
9291notbid 318 . . . . . . . 8 (𝑦 = 𝑧 → (¬ 𝑄 𝑦 ↔ ¬ 𝑄 𝑧))
93 oveq1 7376 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦 𝑄) = (𝑧 𝑄))
9493eqeq2d 2740 . . . . . . . 8 (𝑦 = 𝑧 → (𝑋 = (𝑦 𝑄) ↔ 𝑋 = (𝑧 𝑄)))
9592, 94anbi12d 632 . . . . . . 7 (𝑦 = 𝑧 → ((¬ 𝑄 𝑦𝑋 = (𝑦 𝑄)) ↔ (¬ 𝑄 𝑧𝑋 = (𝑧 𝑄))))
9695rspcev 3585 . . . . . 6 ((𝑧𝑁 ∧ (¬ 𝑄 𝑧𝑋 = (𝑧 𝑄))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
9759, 60, 90, 96syl12anc 836 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
98973exp2 1355 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (¬ 𝑄 𝑧 → ((𝑧𝑁𝑟𝐴) → ((¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))))
9958, 98pm2.61d 179 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ((𝑧𝑁𝑟𝐴) → ((¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))))
10099rexlimdvv 3191 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))
10113, 100mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18252  Latclat 18372  ccvr 39248  Atomscatm 39249  HLchlt 39336  LLinesclln 39478  LPlanesclpl 39479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-llines 39485  df-lplanes 39486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator