Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnexllnN Structured version   Visualization version   GIF version

Theorem lplnexllnN 36860
Description: Given an atom on a lattice plane, there is a lattice line whose join with the atom equals the plane. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lplnexat.l = (le‘𝐾)
lplnexat.j = (join‘𝐾)
lplnexat.a 𝐴 = (Atoms‘𝐾)
lplnexat.n 𝑁 = (LLines‘𝐾)
lplnexat.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnexllnN (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
Distinct variable groups:   𝑦,   𝑦,   𝑦,𝑁   𝑦,𝑄   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝑃(𝑦)   𝐾(𝑦)

Proof of Theorem lplnexllnN
Dummy variables 𝑠 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1189 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → 𝑋𝑃)
2 simpl1 1188 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → 𝐾 ∈ HL)
3 eqid 2798 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 lplnexat.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
53, 4lplnbase 36830 . . . . 5 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
61, 5syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → 𝑋 ∈ (Base‘𝐾))
7 lplnexat.l . . . . 5 = (le‘𝐾)
8 lplnexat.j . . . . 5 = (join‘𝐾)
9 lplnexat.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 lplnexat.n . . . . 5 𝑁 = (LLines‘𝐾)
113, 7, 8, 9, 10, 4islpln3 36829 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑃 ↔ ∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟))))
122, 6, 11syl2anc 587 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (𝑋𝑃 ↔ ∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟))))
131, 12mpbid 235 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟)))
14 simpll1 1209 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝐾 ∈ HL)
15 simpr2l 1229 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧𝑁)
16 simpll3 1211 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄𝐴)
17 simpr1 1191 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄 𝑧)
187, 8, 9, 10llnexatN 36817 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑧𝑁𝑄𝐴) ∧ 𝑄 𝑧) → ∃𝑠𝐴 (𝑄𝑠𝑧 = (𝑄 𝑠)))
1914, 15, 16, 17, 18syl31anc 1370 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ∃𝑠𝐴 (𝑄𝑠𝑧 = (𝑄 𝑠)))
20 simp1l1 1263 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝐾 ∈ HL)
21 simp22r 1290 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑟𝐴)
22 simp3l 1198 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑠𝐴)
23 simp1l3 1265 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑄𝐴)
24 simp23l 1291 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ¬ 𝑟 𝑧)
25 simp3rr 1244 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑧 = (𝑄 𝑠))
2625breq2d 5042 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → (𝑟 𝑧𝑟 (𝑄 𝑠)))
2724, 26mtbid 327 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ¬ 𝑟 (𝑄 𝑠))
287, 8, 9atnlej2 36676 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑠𝐴) ∧ ¬ 𝑟 (𝑄 𝑠)) → 𝑟𝑠)
2920, 21, 23, 22, 27, 28syl131anc 1380 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑟𝑠)
308, 9, 10llni2 36808 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑟𝐴𝑠𝐴) ∧ 𝑟𝑠) → (𝑟 𝑠) ∈ 𝑁)
3120, 21, 22, 29, 30syl31anc 1370 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → (𝑟 𝑠) ∈ 𝑁)
32 simp3rl 1243 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑄𝑠)
337, 8, 9hlatcon2 36748 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑠𝐴𝑟𝐴) ∧ (𝑄𝑠 ∧ ¬ 𝑟 (𝑄 𝑠))) → ¬ 𝑄 (𝑟 𝑠))
3420, 23, 22, 21, 32, 27, 33syl132anc 1385 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ¬ 𝑄 (𝑟 𝑠))
35 simp23r 1292 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑋 = (𝑧 𝑟))
3625oveq1d 7150 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → (𝑧 𝑟) = ((𝑄 𝑠) 𝑟))
3720hllatd 36660 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝐾 ∈ Lat)
383, 9atbase 36585 . . . . . . . . . . . . 13 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3923, 38syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑄 ∈ (Base‘𝐾))
403, 9atbase 36585 . . . . . . . . . . . . 13 (𝑠𝐴𝑠 ∈ (Base‘𝐾))
4122, 40syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑠 ∈ (Base‘𝐾))
423, 9atbase 36585 . . . . . . . . . . . . 13 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
4321, 42syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑟 ∈ (Base‘𝐾))
443, 8latj31 17701 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾))) → ((𝑄 𝑠) 𝑟) = ((𝑟 𝑠) 𝑄))
4537, 39, 41, 43, 44syl13anc 1369 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ((𝑄 𝑠) 𝑟) = ((𝑟 𝑠) 𝑄))
4635, 36, 453eqtrd 2837 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑋 = ((𝑟 𝑠) 𝑄))
47 breq2 5034 . . . . . . . . . . . . 13 (𝑦 = (𝑟 𝑠) → (𝑄 𝑦𝑄 (𝑟 𝑠)))
4847notbid 321 . . . . . . . . . . . 12 (𝑦 = (𝑟 𝑠) → (¬ 𝑄 𝑦 ↔ ¬ 𝑄 (𝑟 𝑠)))
49 oveq1 7142 . . . . . . . . . . . . 13 (𝑦 = (𝑟 𝑠) → (𝑦 𝑄) = ((𝑟 𝑠) 𝑄))
5049eqeq2d 2809 . . . . . . . . . . . 12 (𝑦 = (𝑟 𝑠) → (𝑋 = (𝑦 𝑄) ↔ 𝑋 = ((𝑟 𝑠) 𝑄)))
5148, 50anbi12d 633 . . . . . . . . . . 11 (𝑦 = (𝑟 𝑠) → ((¬ 𝑄 𝑦𝑋 = (𝑦 𝑄)) ↔ (¬ 𝑄 (𝑟 𝑠) ∧ 𝑋 = ((𝑟 𝑠) 𝑄))))
5251rspcev 3571 . . . . . . . . . 10 (((𝑟 𝑠) ∈ 𝑁 ∧ (¬ 𝑄 (𝑟 𝑠) ∧ 𝑋 = ((𝑟 𝑠) 𝑄))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
5331, 34, 46, 52syl12anc 835 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
54533expia 1118 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ((𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))
5554expd 419 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑠𝐴 → ((𝑄𝑠𝑧 = (𝑄 𝑠)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))))
5655rexlimdv 3242 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (∃𝑠𝐴 (𝑄𝑠𝑧 = (𝑄 𝑠)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))
5719, 56mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
58573exp2 1351 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (𝑄 𝑧 → ((𝑧𝑁𝑟𝐴) → ((¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))))
59 simpr2l 1229 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧𝑁)
60 simpr1 1191 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ¬ 𝑄 𝑧)
61 simpll1 1209 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝐾 ∈ HL)
6261hllatd 36660 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝐾 ∈ Lat)
633, 10llnbase 36805 . . . . . . . . . . . 12 (𝑧𝑁𝑧 ∈ (Base‘𝐾))
6459, 63syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧 ∈ (Base‘𝐾))
65 simpr2r 1230 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑟𝐴)
6665, 42syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑟 ∈ (Base‘𝐾))
673, 7, 8latlej1 17662 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → 𝑧 (𝑧 𝑟))
6862, 64, 66, 67syl3anc 1368 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧 (𝑧 𝑟))
69 simpr3r 1232 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋 = (𝑧 𝑟))
7068, 69breqtrrd 5058 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧 𝑋)
71 simplr 768 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄 𝑋)
72 simpll3 1211 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄𝐴)
7372, 38syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄 ∈ (Base‘𝐾))
74 simpll2 1210 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋𝑃)
7574, 5syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋 ∈ (Base‘𝐾))
763, 7, 8latjle12 17664 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾))) → ((𝑧 𝑋𝑄 𝑋) ↔ (𝑧 𝑄) 𝑋))
7762, 64, 73, 75, 76syl13anc 1369 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ((𝑧 𝑋𝑄 𝑋) ↔ (𝑧 𝑄) 𝑋))
7870, 71, 77mpbi2and 711 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) 𝑋)
793, 8latjcl 17653 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑧 𝑄) ∈ (Base‘𝐾))
8062, 64, 73, 79syl3anc 1368 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) ∈ (Base‘𝐾))
81 eqid 2798 . . . . . . . . . . . . 13 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
823, 7, 8, 81, 9cvr1 36706 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑄𝐴) → (¬ 𝑄 𝑧𝑧( ⋖ ‘𝐾)(𝑧 𝑄)))
8361, 64, 72, 82syl3anc 1368 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (¬ 𝑄 𝑧𝑧( ⋖ ‘𝐾)(𝑧 𝑄)))
8460, 83mpbid 235 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧( ⋖ ‘𝐾)(𝑧 𝑄))
853, 81, 10, 4lplni 36828 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑧 𝑄) ∈ (Base‘𝐾) ∧ 𝑧𝑁) ∧ 𝑧( ⋖ ‘𝐾)(𝑧 𝑄)) → (𝑧 𝑄) ∈ 𝑃)
8661, 80, 59, 84, 85syl31anc 1370 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) ∈ 𝑃)
877, 4lplncmp 36858 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑧 𝑄) ∈ 𝑃𝑋𝑃) → ((𝑧 𝑄) 𝑋 ↔ (𝑧 𝑄) = 𝑋))
8861, 86, 74, 87syl3anc 1368 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ((𝑧 𝑄) 𝑋 ↔ (𝑧 𝑄) = 𝑋))
8978, 88mpbid 235 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) = 𝑋)
9089eqcomd 2804 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋 = (𝑧 𝑄))
91 breq2 5034 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑄 𝑦𝑄 𝑧))
9291notbid 321 . . . . . . . 8 (𝑦 = 𝑧 → (¬ 𝑄 𝑦 ↔ ¬ 𝑄 𝑧))
93 oveq1 7142 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦 𝑄) = (𝑧 𝑄))
9493eqeq2d 2809 . . . . . . . 8 (𝑦 = 𝑧 → (𝑋 = (𝑦 𝑄) ↔ 𝑋 = (𝑧 𝑄)))
9592, 94anbi12d 633 . . . . . . 7 (𝑦 = 𝑧 → ((¬ 𝑄 𝑦𝑋 = (𝑦 𝑄)) ↔ (¬ 𝑄 𝑧𝑋 = (𝑧 𝑄))))
9695rspcev 3571 . . . . . 6 ((𝑧𝑁 ∧ (¬ 𝑄 𝑧𝑋 = (𝑧 𝑄))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
9759, 60, 90, 96syl12anc 835 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
98973exp2 1351 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (¬ 𝑄 𝑧 → ((𝑧𝑁𝑟𝐴) → ((¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))))
9958, 98pm2.61d 182 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ((𝑧𝑁𝑟𝐴) → ((¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))))
10099rexlimdvv 3252 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))
10113, 100mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  joincjn 17546  Latclat 17647  ccvr 36558  Atomscatm 36559  HLchlt 36646  LLinesclln 36787  LPlanesclpl 36788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator