Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnexllnN Structured version   Visualization version   GIF version

Theorem lplnexllnN 39563
Description: Given an atom on a lattice plane, there is a lattice line whose join with the atom equals the plane. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lplnexat.l = (le‘𝐾)
lplnexat.j = (join‘𝐾)
lplnexat.a 𝐴 = (Atoms‘𝐾)
lplnexat.n 𝑁 = (LLines‘𝐾)
lplnexat.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnexllnN (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
Distinct variable groups:   𝑦,   𝑦,   𝑦,𝑁   𝑦,𝑄   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝑃(𝑦)   𝐾(𝑦)

Proof of Theorem lplnexllnN
Dummy variables 𝑠 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1193 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → 𝑋𝑃)
2 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → 𝐾 ∈ HL)
3 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 lplnexat.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
53, 4lplnbase 39533 . . . . 5 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
61, 5syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → 𝑋 ∈ (Base‘𝐾))
7 lplnexat.l . . . . 5 = (le‘𝐾)
8 lplnexat.j . . . . 5 = (join‘𝐾)
9 lplnexat.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 lplnexat.n . . . . 5 𝑁 = (LLines‘𝐾)
113, 7, 8, 9, 10, 4islpln3 39532 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑋𝑃 ↔ ∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟))))
122, 6, 11syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (𝑋𝑃 ↔ ∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟))))
131, 12mpbid 232 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟)))
14 simpll1 1213 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝐾 ∈ HL)
15 simpr2l 1233 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧𝑁)
16 simpll3 1215 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄𝐴)
17 simpr1 1195 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄 𝑧)
187, 8, 9, 10llnexatN 39520 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑧𝑁𝑄𝐴) ∧ 𝑄 𝑧) → ∃𝑠𝐴 (𝑄𝑠𝑧 = (𝑄 𝑠)))
1914, 15, 16, 17, 18syl31anc 1375 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ∃𝑠𝐴 (𝑄𝑠𝑧 = (𝑄 𝑠)))
20 simp1l1 1267 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝐾 ∈ HL)
21 simp22r 1294 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑟𝐴)
22 simp3l 1202 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑠𝐴)
23 simp1l3 1269 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑄𝐴)
24 simp23l 1295 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ¬ 𝑟 𝑧)
25 simp3rr 1248 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑧 = (𝑄 𝑠))
2625breq2d 5104 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → (𝑟 𝑧𝑟 (𝑄 𝑠)))
2724, 26mtbid 324 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ¬ 𝑟 (𝑄 𝑠))
287, 8, 9atnlej2 39379 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑠𝐴) ∧ ¬ 𝑟 (𝑄 𝑠)) → 𝑟𝑠)
2920, 21, 23, 22, 27, 28syl131anc 1385 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑟𝑠)
308, 9, 10llni2 39511 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑟𝐴𝑠𝐴) ∧ 𝑟𝑠) → (𝑟 𝑠) ∈ 𝑁)
3120, 21, 22, 29, 30syl31anc 1375 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → (𝑟 𝑠) ∈ 𝑁)
32 simp3rl 1247 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑄𝑠)
337, 8, 9hlatcon2 39451 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑠𝐴𝑟𝐴) ∧ (𝑄𝑠 ∧ ¬ 𝑟 (𝑄 𝑠))) → ¬ 𝑄 (𝑟 𝑠))
3420, 23, 22, 21, 32, 27, 33syl132anc 1390 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ¬ 𝑄 (𝑟 𝑠))
35 simp23r 1296 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑋 = (𝑧 𝑟))
3625oveq1d 7364 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → (𝑧 𝑟) = ((𝑄 𝑠) 𝑟))
3720hllatd 39363 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝐾 ∈ Lat)
383, 9atbase 39288 . . . . . . . . . . . . 13 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3923, 38syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑄 ∈ (Base‘𝐾))
403, 9atbase 39288 . . . . . . . . . . . . 13 (𝑠𝐴𝑠 ∈ (Base‘𝐾))
4122, 40syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑠 ∈ (Base‘𝐾))
423, 9atbase 39288 . . . . . . . . . . . . 13 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
4321, 42syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑟 ∈ (Base‘𝐾))
443, 8latj31 18393 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾))) → ((𝑄 𝑠) 𝑟) = ((𝑟 𝑠) 𝑄))
4537, 39, 41, 43, 44syl13anc 1374 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ((𝑄 𝑠) 𝑟) = ((𝑟 𝑠) 𝑄))
4635, 36, 453eqtrd 2768 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → 𝑋 = ((𝑟 𝑠) 𝑄))
47 breq2 5096 . . . . . . . . . . . . 13 (𝑦 = (𝑟 𝑠) → (𝑄 𝑦𝑄 (𝑟 𝑠)))
4847notbid 318 . . . . . . . . . . . 12 (𝑦 = (𝑟 𝑠) → (¬ 𝑄 𝑦 ↔ ¬ 𝑄 (𝑟 𝑠)))
49 oveq1 7356 . . . . . . . . . . . . 13 (𝑦 = (𝑟 𝑠) → (𝑦 𝑄) = ((𝑟 𝑠) 𝑄))
5049eqeq2d 2740 . . . . . . . . . . . 12 (𝑦 = (𝑟 𝑠) → (𝑋 = (𝑦 𝑄) ↔ 𝑋 = ((𝑟 𝑠) 𝑄)))
5148, 50anbi12d 632 . . . . . . . . . . 11 (𝑦 = (𝑟 𝑠) → ((¬ 𝑄 𝑦𝑋 = (𝑦 𝑄)) ↔ (¬ 𝑄 (𝑟 𝑠) ∧ 𝑋 = ((𝑟 𝑠) 𝑄))))
5251rspcev 3577 . . . . . . . . . 10 (((𝑟 𝑠) ∈ 𝑁 ∧ (¬ 𝑄 (𝑟 𝑠) ∧ 𝑋 = ((𝑟 𝑠) 𝑄))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
5331, 34, 46, 52syl12anc 836 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟))) ∧ (𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠)))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
54533expia 1121 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ((𝑠𝐴 ∧ (𝑄𝑠𝑧 = (𝑄 𝑠))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))
5554expd 415 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑠𝐴 → ((𝑄𝑠𝑧 = (𝑄 𝑠)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))))
5655rexlimdv 3128 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (∃𝑠𝐴 (𝑄𝑠𝑧 = (𝑄 𝑠)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))
5719, 56mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
58573exp2 1355 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (𝑄 𝑧 → ((𝑧𝑁𝑟𝐴) → ((¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))))
59 simpr2l 1233 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧𝑁)
60 simpr1 1195 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ¬ 𝑄 𝑧)
61 simpll1 1213 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝐾 ∈ HL)
6261hllatd 39363 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝐾 ∈ Lat)
633, 10llnbase 39508 . . . . . . . . . . . 12 (𝑧𝑁𝑧 ∈ (Base‘𝐾))
6459, 63syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧 ∈ (Base‘𝐾))
65 simpr2r 1234 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑟𝐴)
6665, 42syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑟 ∈ (Base‘𝐾))
673, 7, 8latlej1 18354 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → 𝑧 (𝑧 𝑟))
6862, 64, 66, 67syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧 (𝑧 𝑟))
69 simpr3r 1236 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋 = (𝑧 𝑟))
7068, 69breqtrrd 5120 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧 𝑋)
71 simplr 768 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄 𝑋)
72 simpll3 1215 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄𝐴)
7372, 38syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑄 ∈ (Base‘𝐾))
74 simpll2 1214 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋𝑃)
7574, 5syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋 ∈ (Base‘𝐾))
763, 7, 8latjle12 18356 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾))) → ((𝑧 𝑋𝑄 𝑋) ↔ (𝑧 𝑄) 𝑋))
7762, 64, 73, 75, 76syl13anc 1374 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ((𝑧 𝑋𝑄 𝑋) ↔ (𝑧 𝑄) 𝑋))
7870, 71, 77mpbi2and 712 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) 𝑋)
793, 8latjcl 18345 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑧 𝑄) ∈ (Base‘𝐾))
8062, 64, 73, 79syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) ∈ (Base‘𝐾))
81 eqid 2729 . . . . . . . . . . . . 13 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
823, 7, 8, 81, 9cvr1 39409 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑄𝐴) → (¬ 𝑄 𝑧𝑧( ⋖ ‘𝐾)(𝑧 𝑄)))
8361, 64, 72, 82syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (¬ 𝑄 𝑧𝑧( ⋖ ‘𝐾)(𝑧 𝑄)))
8460, 83mpbid 232 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑧( ⋖ ‘𝐾)(𝑧 𝑄))
853, 81, 10, 4lplni 39531 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑧 𝑄) ∈ (Base‘𝐾) ∧ 𝑧𝑁) ∧ 𝑧( ⋖ ‘𝐾)(𝑧 𝑄)) → (𝑧 𝑄) ∈ 𝑃)
8661, 80, 59, 84, 85syl31anc 1375 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) ∈ 𝑃)
877, 4lplncmp 39561 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑧 𝑄) ∈ 𝑃𝑋𝑃) → ((𝑧 𝑄) 𝑋 ↔ (𝑧 𝑄) = 𝑋))
8861, 86, 74, 87syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ((𝑧 𝑄) 𝑋 ↔ (𝑧 𝑄) = 𝑋))
8978, 88mpbid 232 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → (𝑧 𝑄) = 𝑋)
9089eqcomd 2735 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → 𝑋 = (𝑧 𝑄))
91 breq2 5096 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑄 𝑦𝑄 𝑧))
9291notbid 318 . . . . . . . 8 (𝑦 = 𝑧 → (¬ 𝑄 𝑦 ↔ ¬ 𝑄 𝑧))
93 oveq1 7356 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦 𝑄) = (𝑧 𝑄))
9493eqeq2d 2740 . . . . . . . 8 (𝑦 = 𝑧 → (𝑋 = (𝑦 𝑄) ↔ 𝑋 = (𝑧 𝑄)))
9592, 94anbi12d 632 . . . . . . 7 (𝑦 = 𝑧 → ((¬ 𝑄 𝑦𝑋 = (𝑦 𝑄)) ↔ (¬ 𝑄 𝑧𝑋 = (𝑧 𝑄))))
9695rspcev 3577 . . . . . 6 ((𝑧𝑁 ∧ (¬ 𝑄 𝑧𝑋 = (𝑧 𝑄))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
9759, 60, 90, 96syl12anc 836 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) ∧ (¬ 𝑄 𝑧 ∧ (𝑧𝑁𝑟𝐴) ∧ (¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)))) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
98973exp2 1355 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (¬ 𝑄 𝑧 → ((𝑧𝑁𝑟𝐴) → ((¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))))
9958, 98pm2.61d 179 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ((𝑧𝑁𝑟𝐴) → ((¬ 𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))))
10099rexlimdvv 3185 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → (∃𝑧𝑁𝑟𝐴𝑟 𝑧𝑋 = (𝑧 𝑟)) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄))))
10113, 100mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  Latclat 18337  ccvr 39261  Atomscatm 39262  HLchlt 39349  LLinesclln 39490  LPlanesclpl 39491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39175  df-ol 39177  df-oml 39178  df-covers 39265  df-ats 39266  df-atl 39297  df-cvlat 39321  df-hlat 39350  df-llines 39497  df-lplanes 39498
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator