![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ad2antr3 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 30-Dec-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr1 1168 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: simpr3 1195 simpr3l 1233 simpr3r 1234 simpr31 1262 simpr32 1263 simpr33 1264 fpr2g 7231 frfi 9319 ressress 17294 funcestrcsetclem9 18204 funcsetcestrclem9 18219 latjjdir 18550 grprcan 19004 grpsubrcan 19052 grpaddsubass 19061 mhmmnd 19095 zntoslem 21593 ipdir 21675 ipass 21681 qustgpopn 24144 extwwlkfab 30381 grpomuldivass 30570 nvmdi 30677 dmdsl3 32344 dvrcan5 33226 imaslmod 33361 idlsrgmnd 33522 esum2d 34074 voliune 34210 btwnconn1lem7 36075 poimirlem4 37611 cvrnbtwn4 39261 paddasslem14 39816 paddasslem17 39819 paddss 39828 pmod1i 39831 cdleme1 40210 cdleme2 40211 xlimbr 45783 sbgoldbst 47703 funcringcsetcALTV2lem9 48142 funcringcsetclem9ALTV 48165 |
Copyright terms: Public domain | W3C validator |