| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 30-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr1 1170 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr3 1197 simpr3l 1235 simpr3r 1236 simpr31 1264 simpr32 1265 simpr33 1266 fpr2g 7167 frfi 9208 ressress 17193 funcestrcsetclem9 18085 funcsetcestrclem9 18100 latjjdir 18427 grprcan 18881 grpsubrcan 18929 grpaddsubass 18938 mhmmnd 18972 zntoslem 21442 ipdir 21524 ipass 21530 qustgpopn 23983 extwwlkfab 30254 grpomuldivass 30443 nvmdi 30550 dmdsl3 32217 dvrcan5 33160 imaslmod 33297 idlsrgmnd 33458 esum2d 34056 voliune 34192 btwnconn1lem7 36054 poimirlem4 37591 cvrnbtwn4 39245 paddasslem14 39800 paddasslem17 39803 paddss 39812 pmod1i 39815 cdleme1 40194 cdleme2 40195 xlimbr 45798 sbgoldbst 47752 funcringcsetcALTV2lem9 48259 funcringcsetclem9ALTV 48282 |
| Copyright terms: Public domain | W3C validator |