![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ad2antr3 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 30-Dec-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantrl 714 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr1 1166 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 |
This theorem is referenced by: simpr3 1193 simpr3l 1231 simpr3r 1232 simpr31 1260 simpr32 1261 simpr33 1262 fpr2g 7227 frfi 9317 ressress 17234 funcestrcsetclem9 18144 funcsetcestrclem9 18159 latjjdir 18489 grprcan 18935 grpsubrcan 18982 grpaddsubass 18991 mhmmnd 19025 zntoslem 21495 ipdir 21576 ipass 21582 qustgpopn 24042 extwwlkfab 30180 grpomuldivass 30369 nvmdi 30476 dmdsl3 32143 dvrcan5 32962 imaslmod 33083 idlsrgmnd 33243 esum2d 33717 voliune 33853 btwnconn1lem7 35694 poimirlem4 37102 cvrnbtwn4 38755 paddasslem14 39310 paddasslem17 39313 paddss 39322 pmod1i 39325 cdleme1 39704 cdleme2 39705 xlimbr 45217 sbgoldbst 47120 funcringcsetcALTV2lem9 47411 funcringcsetclem9ALTV 47434 |
Copyright terms: Public domain | W3C validator |