MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ad2antr3 Structured version   Visualization version   GIF version

Theorem 3ad2antr3 1190
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 30-Dec-2007.)
Hypothesis
Ref Expression
3ad2antl.1 ((𝜑𝜒) → 𝜃)
Assertion
Ref Expression
3ad2antr3 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)

Proof of Theorem 3ad2antr3
StepHypRef Expression
1 3ad2antl.1 . . 3 ((𝜑𝜒) → 𝜃)
21adantrl 716 . 2 ((𝜑 ∧ (𝜏𝜒)) → 𝜃)
323adantr1 1169 1 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  simpr3  1196  simpr3l  1234  simpr3r  1235  simpr31  1263  simpr32  1264  simpr33  1265  fpr2g  7199  frfi  9287  ressress  17253  funcestrcsetclem9  18145  funcsetcestrclem9  18160  latjjdir  18487  grprcan  18941  grpsubrcan  18989  grpaddsubass  18998  mhmmnd  19032  zntoslem  21502  ipdir  21584  ipass  21590  qustgpopn  24043  extwwlkfab  30265  grpomuldivass  30454  nvmdi  30561  dmdsl3  32228  dvrcan5  33149  imaslmod  33286  idlsrgmnd  33447  esum2d  34032  voliune  34168  btwnconn1lem7  36032  poimirlem4  37569  cvrnbtwn4  39218  paddasslem14  39773  paddasslem17  39776  paddss  39785  pmod1i  39788  cdleme1  40167  cdleme2  40168  xlimbr  45786  sbgoldbst  47710  funcringcsetcALTV2lem9  48159  funcringcsetclem9ALTV  48182
  Copyright terms: Public domain W3C validator