![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ad2antr3 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 30-Dec-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantrl 715 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr1 1169 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: simpr3 1196 simpr3l 1234 simpr3r 1235 simpr31 1263 simpr32 1264 simpr33 1265 fpr2g 7248 frfi 9349 ressress 17307 funcestrcsetclem9 18217 funcsetcestrclem9 18232 latjjdir 18562 grprcan 19013 grpsubrcan 19061 grpaddsubass 19070 mhmmnd 19104 zntoslem 21598 ipdir 21680 ipass 21686 qustgpopn 24149 extwwlkfab 30384 grpomuldivass 30573 nvmdi 30680 dmdsl3 32347 dvrcan5 33216 imaslmod 33346 idlsrgmnd 33507 esum2d 34057 voliune 34193 btwnconn1lem7 36057 poimirlem4 37584 cvrnbtwn4 39235 paddasslem14 39790 paddasslem17 39793 paddss 39802 pmod1i 39805 cdleme1 40184 cdleme2 40185 xlimbr 45748 sbgoldbst 47652 funcringcsetcALTV2lem9 48021 funcringcsetclem9ALTV 48044 |
Copyright terms: Public domain | W3C validator |