| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 30-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr1 1170 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr3 1197 simpr3l 1235 simpr3r 1236 simpr31 1264 simpr32 1265 simpr33 1266 fpr2g 7208 frfi 9298 ressress 17273 funcestrcsetclem9 18165 funcsetcestrclem9 18180 latjjdir 18507 grprcan 18961 grpsubrcan 19009 grpaddsubass 19018 mhmmnd 19052 zntoslem 21522 ipdir 21604 ipass 21610 qustgpopn 24063 extwwlkfab 30338 grpomuldivass 30527 nvmdi 30634 dmdsl3 32301 dvrcan5 33236 imaslmod 33373 idlsrgmnd 33534 esum2d 34129 voliune 34265 btwnconn1lem7 36116 poimirlem4 37653 cvrnbtwn4 39302 paddasslem14 39857 paddasslem17 39860 paddss 39869 pmod1i 39872 cdleme1 40251 cdleme2 40252 xlimbr 45823 sbgoldbst 47759 funcringcsetcALTV2lem9 48240 funcringcsetclem9ALTV 48263 |
| Copyright terms: Public domain | W3C validator |