Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ad2antr3 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 30-Dec-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantrl 713 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr1 1168 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: simpr3 1195 simpr3l 1233 simpr3r 1234 simpr31 1262 simpr32 1263 simpr33 1264 fpr2g 7087 frfi 9059 ressress 16958 funcestrcsetclem9 17865 funcsetcestrclem9 17880 latjjdir 18210 grprcan 18613 grpsubrcan 18656 grpaddsubass 18665 mhmmnd 18697 zntoslem 20764 ipdir 20844 ipass 20850 qustgpopn 23271 extwwlkfab 28716 grpomuldivass 28903 nvmdi 29010 dmdsl3 30677 dvrcan5 31490 imaslmod 31553 idlsrgmnd 31659 esum2d 32061 voliune 32197 btwnconn1lem7 34395 poimirlem4 35781 cvrnbtwn4 37293 paddasslem14 37847 paddasslem17 37850 paddss 37859 pmod1i 37862 cdleme1 38241 cdleme2 38242 xlimbr 43368 sbgoldbst 45230 funcringcsetcALTV2lem9 45602 funcringcsetclem9ALTV 45625 |
Copyright terms: Public domain | W3C validator |