| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 30-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr1 1170 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr3 1197 simpr3l 1235 simpr3r 1236 simpr31 1264 simpr32 1265 simpr33 1266 fpr2g 7147 frfi 9174 ressress 17158 funcestrcsetclem9 18054 funcsetcestrclem9 18069 latjjdir 18398 grprcan 18852 grpsubrcan 18900 grpaddsubass 18909 mhmmnd 18943 zntoslem 21463 ipdir 21546 ipass 21552 qustgpopn 24005 extwwlkfab 30296 grpomuldivass 30485 nvmdi 30592 dmdsl3 32259 dvrcan5 33176 imaslmod 33290 idlsrgmnd 33451 esum2d 34060 voliune 34196 btwnconn1lem7 36067 poimirlem4 37604 cvrnbtwn4 39258 paddasslem14 39812 paddasslem17 39815 paddss 39824 pmod1i 39827 cdleme1 40206 cdleme2 40207 xlimbr 45808 sbgoldbst 47762 funcringcsetcALTV2lem9 48282 funcringcsetclem9ALTV 48305 |
| Copyright terms: Public domain | W3C validator |