| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 30-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr1 1170 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr3 1197 simpr3l 1235 simpr3r 1236 simpr31 1264 simpr32 1265 simpr33 1266 fpr2g 7140 frfi 9164 ressress 17153 funcestrcsetclem9 18049 funcsetcestrclem9 18064 latjjdir 18393 grprcan 18881 grpsubrcan 18929 grpaddsubass 18938 mhmmnd 18972 zntoslem 21488 ipdir 21571 ipass 21577 qustgpopn 24030 extwwlkfab 30324 grpomuldivass 30513 nvmdi 30620 dmdsl3 32287 dvrcan5 33195 imaslmod 33310 idlsrgmnd 33471 esum2d 34098 voliune 34234 btwnconn1lem7 36127 poimirlem4 37664 cvrnbtwn4 39318 paddasslem14 39872 paddasslem17 39875 paddss 39884 pmod1i 39887 cdleme1 40266 cdleme2 40267 xlimbr 45865 sbgoldbst 47809 funcringcsetcALTV2lem9 48329 funcringcsetclem9ALTV 48352 |
| Copyright terms: Public domain | W3C validator |