| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 30-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr1 1169 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr3 1196 simpr3l 1234 simpr3r 1235 simpr31 1263 simpr32 1264 simpr33 1265 fpr2g 7199 frfi 9287 ressress 17253 funcestrcsetclem9 18145 funcsetcestrclem9 18160 latjjdir 18487 grprcan 18941 grpsubrcan 18989 grpaddsubass 18998 mhmmnd 19032 zntoslem 21502 ipdir 21584 ipass 21590 qustgpopn 24043 extwwlkfab 30265 grpomuldivass 30454 nvmdi 30561 dmdsl3 32228 dvrcan5 33149 imaslmod 33286 idlsrgmnd 33447 esum2d 34032 voliune 34168 btwnconn1lem7 36032 poimirlem4 37569 cvrnbtwn4 39218 paddasslem14 39773 paddasslem17 39776 paddss 39785 pmod1i 39788 cdleme1 40167 cdleme2 40168 xlimbr 45786 sbgoldbst 47710 funcringcsetcALTV2lem9 48159 funcringcsetclem9ALTV 48182 |
| Copyright terms: Public domain | W3C validator |