| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 30-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr1 1170 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr3 1197 simpr3l 1235 simpr3r 1236 simpr31 1264 simpr32 1265 simpr33 1266 fpr2g 7185 frfi 9232 ressress 17217 funcestrcsetclem9 18109 funcsetcestrclem9 18124 latjjdir 18451 grprcan 18905 grpsubrcan 18953 grpaddsubass 18962 mhmmnd 18996 zntoslem 21466 ipdir 21548 ipass 21554 qustgpopn 24007 extwwlkfab 30281 grpomuldivass 30470 nvmdi 30577 dmdsl3 32244 dvrcan5 33187 imaslmod 33324 idlsrgmnd 33485 esum2d 34083 voliune 34219 btwnconn1lem7 36081 poimirlem4 37618 cvrnbtwn4 39272 paddasslem14 39827 paddasslem17 39830 paddss 39839 pmod1i 39842 cdleme1 40221 cdleme2 40222 xlimbr 45825 sbgoldbst 47776 funcringcsetcALTV2lem9 48283 funcringcsetclem9ALTV 48306 |
| Copyright terms: Public domain | W3C validator |