| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1ll | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1ll | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: lspsolvlem 21081 1marepvsma1 22499 mdetunilem8 22535 madutpos 22558 ax5seg 28918 rabfodom 32487 measinblem 34254 btwnconn1lem2 36153 btwnconn1lem13 36164 athgt 39575 llnle 39637 lplnle 39659 lhpexle1 40127 lhpj1 40141 lhpat3 40165 ltrncnv 40265 cdleme16aN 40378 tendoicl 40915 cdlemk55b 41079 dihatexv 41457 dihglblem6 41459 limccog 45744 icccncfext 46009 stoweidlem31 46153 stoweidlem34 46156 stoweidlem49 46171 stoweidlem57 46179 |
| Copyright terms: Public domain | W3C validator |