Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1ll | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1ll | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 764 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: lspsolvlem 20404 1marepvsma1 21732 mdetunilem8 21768 madutpos 21791 ax5seg 27306 rabfodom 30851 measinblem 32188 btwnconn1lem2 34390 btwnconn1lem13 34401 athgt 37470 llnle 37532 lplnle 37554 lhpexle1 38022 lhpj1 38036 lhpat3 38060 ltrncnv 38160 cdleme16aN 38273 tendoicl 38810 cdlemk55b 38974 dihatexv 39352 dihglblem6 39354 limccog 43161 icccncfext 43428 stoweidlem31 43572 stoweidlem34 43575 stoweidlem49 43590 stoweidlem57 43598 |
Copyright terms: Public domain | W3C validator |