![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1ll | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1ll | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: lspsolvlem 21169 1marepvsma1 22612 mdetunilem8 22648 madutpos 22671 ax5seg 28973 rabfodom 32535 measinblem 34186 btwnconn1lem2 36054 btwnconn1lem13 36065 athgt 39415 llnle 39477 lplnle 39499 lhpexle1 39967 lhpj1 39981 lhpat3 40005 ltrncnv 40105 cdleme16aN 40218 tendoicl 40755 cdlemk55b 40919 dihatexv 41297 dihglblem6 41299 limccog 45543 icccncfext 45810 stoweidlem31 45954 stoweidlem34 45957 stoweidlem49 45972 stoweidlem57 45980 |
Copyright terms: Public domain | W3C validator |