Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1ll | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1ll | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 764 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: lspsolvlem 20476 1marepvsma1 21804 mdetunilem8 21840 madutpos 21863 ax5seg 27415 rabfodom 30960 measinblem 32294 btwnconn1lem2 34448 btwnconn1lem13 34459 athgt 37675 llnle 37737 lplnle 37759 lhpexle1 38227 lhpj1 38241 lhpat3 38265 ltrncnv 38365 cdleme16aN 38478 tendoicl 39015 cdlemk55b 39179 dihatexv 39557 dihglblem6 39559 limccog 43398 icccncfext 43665 stoweidlem31 43809 stoweidlem34 43812 stoweidlem49 43827 stoweidlem57 43835 |
Copyright terms: Public domain | W3C validator |