| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1ll | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1ll | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: lspsolvlem 21052 1marepvsma1 22470 mdetunilem8 22506 madutpos 22529 ax5seg 28865 rabfodom 32434 measinblem 34210 btwnconn1lem2 36076 btwnconn1lem13 36087 athgt 39450 llnle 39512 lplnle 39534 lhpexle1 40002 lhpj1 40016 lhpat3 40040 ltrncnv 40140 cdleme16aN 40253 tendoicl 40790 cdlemk55b 40954 dihatexv 41332 dihglblem6 41334 limccog 45618 icccncfext 45885 stoweidlem31 46029 stoweidlem34 46032 stoweidlem49 46047 stoweidlem57 46055 |
| Copyright terms: Public domain | W3C validator |