| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1ll | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1ll | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: lspsolvlem 21112 1marepvsma1 22537 mdetunilem8 22573 madutpos 22596 ax5seg 28883 rabfodom 32452 measinblem 34180 btwnconn1lem2 36048 btwnconn1lem13 36059 athgt 39417 llnle 39479 lplnle 39501 lhpexle1 39969 lhpj1 39983 lhpat3 40007 ltrncnv 40107 cdleme16aN 40220 tendoicl 40757 cdlemk55b 40921 dihatexv 41299 dihglblem6 41301 limccog 45592 icccncfext 45859 stoweidlem31 46003 stoweidlem34 46006 stoweidlem49 46021 stoweidlem57 46029 |
| Copyright terms: Public domain | W3C validator |