| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1ll | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1ll | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: lspsolvlem 21077 1marepvsma1 22496 mdetunilem8 22532 madutpos 22555 ax5seg 28914 rabfodom 32480 measinblem 34228 btwnconn1lem2 36121 btwnconn1lem13 36132 athgt 39494 llnle 39556 lplnle 39578 lhpexle1 40046 lhpj1 40060 lhpat3 40084 ltrncnv 40184 cdleme16aN 40297 tendoicl 40834 cdlemk55b 40998 dihatexv 41376 dihglblem6 41378 limccog 45659 icccncfext 45924 stoweidlem31 46068 stoweidlem34 46071 stoweidlem49 46086 stoweidlem57 46094 |
| Copyright terms: Public domain | W3C validator |