MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1ll Structured version   Visualization version   GIF version

Theorem simp1ll 1237
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1ll ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃𝜏) → 𝜑)

Proof of Theorem simp1ll
StepHypRef Expression
1 simpll 766 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜑)
213ad2ant1 1133 1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃𝜏) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  lspsolvlem  21081  1marepvsma1  22499  mdetunilem8  22535  madutpos  22558  ax5seg  28918  rabfodom  32487  measinblem  34254  btwnconn1lem2  36153  btwnconn1lem13  36164  athgt  39575  llnle  39637  lplnle  39659  lhpexle1  40127  lhpj1  40141  lhpat3  40165  ltrncnv  40265  cdleme16aN  40378  tendoicl  40915  cdlemk55b  41079  dihatexv  41457  dihglblem6  41459  limccog  45744  icccncfext  46009  stoweidlem31  46153  stoweidlem34  46156  stoweidlem49  46171  stoweidlem57  46179
  Copyright terms: Public domain W3C validator