MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1ll Structured version   Visualization version   GIF version

Theorem simp1ll 1235
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1ll ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃𝜏) → 𝜑)

Proof of Theorem simp1ll
StepHypRef Expression
1 simpll 764 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜑)
213ad2ant1 1132 1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃𝜏) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  lspsolvlem  20404  1marepvsma1  21732  mdetunilem8  21768  madutpos  21791  ax5seg  27306  rabfodom  30851  measinblem  32188  btwnconn1lem2  34390  btwnconn1lem13  34401  athgt  37470  llnle  37532  lplnle  37554  lhpexle1  38022  lhpj1  38036  lhpat3  38060  ltrncnv  38160  cdleme16aN  38273  tendoicl  38810  cdlemk55b  38974  dihatexv  39352  dihglblem6  39354  limccog  43161  icccncfext  43428  stoweidlem31  43572  stoweidlem34  43575  stoweidlem49  43590  stoweidlem57  43598
  Copyright terms: Public domain W3C validator