![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1ll | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1ll | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 767 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
2 | 1 | 3ad2ant1 1134 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: lspsolvlem 21171 1marepvsma1 22614 mdetunilem8 22650 madutpos 22673 ax5seg 28979 rabfodom 32548 measinblem 34215 btwnconn1lem2 36083 btwnconn1lem13 36094 athgt 39453 llnle 39515 lplnle 39537 lhpexle1 40005 lhpj1 40019 lhpat3 40043 ltrncnv 40143 cdleme16aN 40256 tendoicl 40793 cdlemk55b 40957 dihatexv 41335 dihglblem6 41337 limccog 45604 icccncfext 45871 stoweidlem31 46015 stoweidlem34 46018 stoweidlem49 46033 stoweidlem57 46041 |
Copyright terms: Public domain | W3C validator |