| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1ll | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1ll | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: lspsolvlem 21058 1marepvsma1 22476 mdetunilem8 22512 madutpos 22535 ax5seg 28871 rabfodom 32440 measinblem 34216 btwnconn1lem2 36071 btwnconn1lem13 36082 athgt 39445 llnle 39507 lplnle 39529 lhpexle1 39997 lhpj1 40011 lhpat3 40035 ltrncnv 40135 cdleme16aN 40248 tendoicl 40785 cdlemk55b 40949 dihatexv 41327 dihglblem6 41329 limccog 45611 icccncfext 45878 stoweidlem31 46022 stoweidlem34 46025 stoweidlem49 46040 stoweidlem57 46048 |
| Copyright terms: Public domain | W3C validator |