Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1ll | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1ll | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 763 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
2 | 1 | 3ad2ant1 1131 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: lspsolvlem 20319 1marepvsma1 21640 mdetunilem8 21676 madutpos 21699 ax5seg 27209 rabfodom 30752 measinblem 32088 btwnconn1lem2 34317 btwnconn1lem13 34328 athgt 37397 llnle 37459 lplnle 37481 lhpexle1 37949 lhpj1 37963 lhpat3 37987 ltrncnv 38087 cdleme16aN 38200 tendoicl 38737 cdlemk55b 38901 dihatexv 39279 dihglblem6 39281 limccog 43051 icccncfext 43318 stoweidlem31 43462 stoweidlem34 43465 stoweidlem49 43480 stoweidlem57 43488 |
Copyright terms: Public domain | W3C validator |