![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpr3l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr3l | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 769 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2antr3 1190 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: poxp2 8131 nosupbnd1lem5 27222 noinfbnd1lem5 27237 ax5seg 28234 axcont 28272 segconeq 35051 idinside 35125 btwnconn1lem10 35137 segletr 35155 cdlemc3 39150 cdlemc4 39151 cdleme1 39184 cdleme2 39185 cdleme3b 39186 cdleme3c 39187 cdleme3e 39189 cdleme27a 39324 stoweidlem56 44851 |
Copyright terms: Public domain | W3C validator |