MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr3l Structured version   Visualization version   GIF version

Theorem simpr3l 1233
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr3l ((𝜏 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)

Proof of Theorem simpr3l
StepHypRef Expression
1 simprl 768 . 2 ((𝜏 ∧ (𝜑𝜓)) → 𝜑)
213ad2antr3 1189 1 ((𝜏 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  ax5seg  27306  axcont  27344  poxp2  33790  nosupbnd1lem5  33915  noinfbnd1lem5  33930  segconeq  34312  idinside  34386  btwnconn1lem10  34398  segletr  34416  cdlemc3  38207  cdlemc4  38208  cdleme1  38241  cdleme2  38242  cdleme3b  38243  cdleme3c  38244  cdleme3e  38246  cdleme27a  38381  stoweidlem56  43597
  Copyright terms: Public domain W3C validator