MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr3l Structured version   Visualization version   GIF version

Theorem simpr3l 1232
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr3l ((𝜏 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)

Proof of Theorem simpr3l
StepHypRef Expression
1 simprl 767 . 2 ((𝜏 ∧ (𝜑𝜓)) → 𝜑)
213ad2antr3 1188 1 ((𝜏 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  ax5seg  27209  axcont  27247  poxp2  33717  nosupbnd1lem5  33842  noinfbnd1lem5  33857  segconeq  34239  idinside  34313  btwnconn1lem10  34325  segletr  34343  cdlemc3  38134  cdlemc4  38135  cdleme1  38168  cdleme2  38169  cdleme3b  38170  cdleme3c  38171  cdleme3e  38173  cdleme27a  38308  stoweidlem56  43487
  Copyright terms: Public domain W3C validator