Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpr3l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr3l | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 769 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2antr3 1190 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: nosupbnd1lem5 26970 noinfbnd1lem5 26985 ax5seg 27661 axcont 27699 poxp2 34136 segconeq 34451 idinside 34525 btwnconn1lem10 34537 segletr 34555 cdlemc3 38512 cdlemc4 38513 cdleme1 38546 cdleme2 38547 cdleme3b 38548 cdleme3c 38549 cdleme3e 38551 cdleme27a 38686 stoweidlem56 43985 |
Copyright terms: Public domain | W3C validator |