MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr3l Structured version   Visualization version   GIF version

Theorem simpr3l 1234
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr3l ((𝜏 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)

Proof of Theorem simpr3l
StepHypRef Expression
1 simprl 770 . 2 ((𝜏 ∧ (𝜑𝜓)) → 𝜑)
213ad2antr3 1190 1 ((𝜏 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  poxp2  8184  nosupbnd1lem5  27775  noinfbnd1lem5  27790  ax5seg  28971  axcont  29009  segconeq  35974  idinside  36048  btwnconn1lem10  36060  segletr  36078  cdlemc3  40150  cdlemc4  40151  cdleme1  40184  cdleme2  40185  cdleme3b  40186  cdleme3c  40187  cdleme3e  40189  cdleme27a  40324  stoweidlem56  45977  clnbgrgrimlem  47785
  Copyright terms: Public domain W3C validator