| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr3l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr3l | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2antr3 1191 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8125 nosupbnd1lem5 27631 noinfbnd1lem5 27646 ax5seg 28872 axcont 28910 segconeq 36005 idinside 36079 btwnconn1lem10 36091 segletr 36109 cdlemc3 40194 cdlemc4 40195 cdleme1 40228 cdleme2 40229 cdleme3b 40230 cdleme3c 40231 cdleme3e 40233 cdleme27a 40368 stoweidlem56 46061 clnbgrgrimlem 47937 |
| Copyright terms: Public domain | W3C validator |