MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr3l Structured version   Visualization version   GIF version

Theorem simpr3l 1234
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr3l ((𝜏 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)

Proof of Theorem simpr3l
StepHypRef Expression
1 simprl 769 . 2 ((𝜏 ∧ (𝜑𝜓)) → 𝜑)
213ad2antr3 1190 1 ((𝜏 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089
This theorem is referenced by:  poxp2  8131  nosupbnd1lem5  27222  noinfbnd1lem5  27237  ax5seg  28234  axcont  28272  segconeq  35051  idinside  35125  btwnconn1lem10  35137  segletr  35155  cdlemc3  39150  cdlemc4  39151  cdleme1  39184  cdleme2  39185  cdleme3b  39186  cdleme3c  39187  cdleme3e  39189  cdleme27a  39324  stoweidlem56  44851
  Copyright terms: Public domain W3C validator