| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr3l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr3l | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2antr3 1191 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8122 nosupbnd1lem5 27624 noinfbnd1lem5 27639 ax5seg 28865 axcont 28903 segconeq 35998 idinside 36072 btwnconn1lem10 36084 segletr 36102 cdlemc3 40187 cdlemc4 40188 cdleme1 40221 cdleme2 40222 cdleme3b 40223 cdleme3c 40224 cdleme3e 40226 cdleme27a 40361 stoweidlem56 46054 clnbgrgrimlem 47933 |
| Copyright terms: Public domain | W3C validator |