| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr3l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr3l | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2antr3 1191 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8083 nosupbnd1lem5 27640 noinfbnd1lem5 27655 ax5seg 28901 axcont 28939 segconeq 35983 idinside 36057 btwnconn1lem10 36069 segletr 36087 cdlemc3 40172 cdlemc4 40173 cdleme1 40206 cdleme2 40207 cdleme3b 40208 cdleme3c 40209 cdleme3e 40211 cdleme27a 40346 stoweidlem56 46038 clnbgrgrimlem 47918 |
| Copyright terms: Public domain | W3C validator |