MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr3l Structured version   Visualization version   GIF version

Theorem simpr3l 1235
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr3l ((𝜏 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)

Proof of Theorem simpr3l
StepHypRef Expression
1 simprl 770 . 2 ((𝜏 ∧ (𝜑𝜓)) → 𝜑)
213ad2antr3 1191 1 ((𝜏 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp2  8073  nosupbnd1lem5  27649  noinfbnd1lem5  27664  ax5seg  28914  axcont  28952  segconeq  36043  idinside  36117  btwnconn1lem10  36129  segletr  36147  cdlemc3  40231  cdlemc4  40232  cdleme1  40265  cdleme2  40266  cdleme3b  40267  cdleme3c  40268  cdleme3e  40270  cdleme27a  40405  stoweidlem56  46093  clnbgrgrimlem  47963
  Copyright terms: Public domain W3C validator