MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr3l Structured version   Visualization version   GIF version

Theorem simpr3l 1235
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr3l ((𝜏 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)

Proof of Theorem simpr3l
StepHypRef Expression
1 simprl 770 . 2 ((𝜏 ∧ (𝜑𝜓)) → 𝜑)
213ad2antr3 1191 1 ((𝜏 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp2  8125  nosupbnd1lem5  27631  noinfbnd1lem5  27646  ax5seg  28872  axcont  28910  segconeq  36005  idinside  36079  btwnconn1lem10  36091  segletr  36109  cdlemc3  40194  cdlemc4  40195  cdleme1  40228  cdleme2  40229  cdleme3b  40230  cdleme3c  40231  cdleme3e  40233  cdleme27a  40368  stoweidlem56  46061  clnbgrgrimlem  47937
  Copyright terms: Public domain W3C validator