MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr3l Structured version   Visualization version   GIF version

Theorem simpr3l 1235
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr3l ((𝜏 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)

Proof of Theorem simpr3l
StepHypRef Expression
1 simprl 770 . 2 ((𝜏 ∧ (𝜑𝜓)) → 𝜑)
213ad2antr3 1191 1 ((𝜏 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp2  8083  nosupbnd1lem5  27640  noinfbnd1lem5  27655  ax5seg  28901  axcont  28939  segconeq  35983  idinside  36057  btwnconn1lem10  36069  segletr  36087  cdlemc3  40172  cdlemc4  40173  cdleme1  40206  cdleme2  40207  cdleme3b  40208  cdleme3c  40209  cdleme3e  40211  cdleme27a  40346  stoweidlem56  46038  clnbgrgrimlem  47918
  Copyright terms: Public domain W3C validator