MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sneqrg Structured version   Visualization version   GIF version

Theorem sneqrg 4770
Description: Closed form of sneqr 4771. (Contributed by Scott Fenton, 1-Apr-2011.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
sneqrg (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))

Proof of Theorem sneqrg
StepHypRef Expression
1 snidg 4595 . . 3 (𝐴𝑉𝐴 ∈ {𝐴})
2 eleq2 2827 . . 3 ({𝐴} = {𝐵} → (𝐴 ∈ {𝐴} ↔ 𝐴 ∈ {𝐵}))
31, 2syl5ibcom 244 . 2 (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 ∈ {𝐵}))
4 elsng 4575 . 2 (𝐴𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
53, 4sylibd 238 1 (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-sn 4562
This theorem is referenced by:  sneqr  4771  sneqbg  4774  snsssng  30860  preimane  31007  altopth1  34267  altopth2  34268
  Copyright terms: Public domain W3C validator