![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sneqrg | Structured version Visualization version GIF version |
Description: Closed form of sneqr 4865. (Contributed by Scott Fenton, 1-Apr-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
sneqrg | ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 4682 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
2 | eleq2 2833 | . . 3 ⊢ ({𝐴} = {𝐵} → (𝐴 ∈ {𝐴} ↔ 𝐴 ∈ {𝐵})) | |
3 | 1, 2 | syl5ibcom 245 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 ∈ {𝐵})) |
4 | elsng 4662 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
5 | 3, 4 | sylibd 239 | 1 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sn 4649 |
This theorem is referenced by: sneqr 4865 sneqbg 4868 snsssng 32543 preimane 32688 altopth1 35929 altopth2 35930 |
Copyright terms: Public domain | W3C validator |