MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sneqr Structured version   Visualization version   GIF version

Theorem sneqr 4787
Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.)
Hypothesis
Ref Expression
sneqr.1 𝐴 ∈ V
Assertion
Ref Expression
sneqr ({𝐴} = {𝐵} → 𝐴 = 𝐵)

Proof of Theorem sneqr
StepHypRef Expression
1 sneqr.1 . 2 𝐴 ∈ V
2 sneqrg 4786 . 2 (𝐴 ∈ V → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
31, 2ax-mp 5 1 ({𝐴} = {𝐵} → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-sn 4572
This theorem is referenced by:  snsssn  4788  mosneq  4789  opth1  5410  propeqop  5442  opthwiener  5449  funsndifnop  7079  canth2  9038  axcc2lem  10322  hashge3el3dif  14389  dis2ndc  23370  axlowdim1  28932  bj-snsetex  36997  poimirlem13  37673  poimirlem14  37674  wopprc  43063  snen1g  43557  mnuprdlem2  44306  hoidmv1le  46632  fsetsnf1  47083
  Copyright terms: Public domain W3C validator