| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sneqr | Structured version Visualization version GIF version | ||
| Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.) |
| Ref | Expression |
|---|---|
| sneqr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sneqr | ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqr.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sneqrg 4792 | . 2 ⊢ (𝐴 ∈ V → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-sn 4578 |
| This theorem is referenced by: snsssn 4794 mosneq 4795 opth1 5420 propeqop 5452 opthwiener 5459 funsndifnop 7093 canth2 9054 axcc2lem 10338 hashge3el3dif 14401 dis2ndc 23395 axlowdim1 28958 bj-snsetex 37080 poimirlem13 37746 poimirlem14 37747 wopprc 43187 snen1g 43681 mnuprdlem2 44430 hoidmv1le 46754 fsetsnf1 47214 |
| Copyright terms: Public domain | W3C validator |