MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sneqr Structured version   Visualization version   GIF version

Theorem sneqr 4865
Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.)
Hypothesis
Ref Expression
sneqr.1 𝐴 ∈ V
Assertion
Ref Expression
sneqr ({𝐴} = {𝐵} → 𝐴 = 𝐵)

Proof of Theorem sneqr
StepHypRef Expression
1 sneqr.1 . 2 𝐴 ∈ V
2 sneqrg 4864 . 2 (𝐴 ∈ V → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
31, 2ax-mp 5 1 ({𝐴} = {𝐵} → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sn 4649
This theorem is referenced by:  snsssn  4866  mosneq  4867  opth1  5495  propeqop  5526  opthwiener  5533  funsndifnop  7185  canth2  9196  axcc2lem  10505  hashge3el3dif  14536  dis2ndc  23489  axlowdim1  28992  bj-snsetex  36929  poimirlem13  37593  poimirlem14  37594  wopprc  42987  snen1g  43486  mnuprdlem2  44242  hoidmv1le  46515  fsetsnf1  46967
  Copyright terms: Public domain W3C validator