MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sneqr Structured version   Visualization version   GIF version

Theorem sneqr 4804
Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.)
Hypothesis
Ref Expression
sneqr.1 𝐴 ∈ V
Assertion
Ref Expression
sneqr ({𝐴} = {𝐵} → 𝐴 = 𝐵)

Proof of Theorem sneqr
StepHypRef Expression
1 sneqr.1 . 2 𝐴 ∈ V
2 sneqrg 4803 . 2 (𝐴 ∈ V → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
31, 2ax-mp 5 1 ({𝐴} = {𝐵} → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-sn 4590
This theorem is referenced by:  snsssn  4805  mosneq  4806  opth1  5435  propeqop  5467  opthwiener  5474  funsndifnop  7123  canth2  9094  axcc2lem  10389  hashge3el3dif  14452  dis2ndc  23347  axlowdim1  28886  bj-snsetex  36951  poimirlem13  37627  poimirlem14  37628  wopprc  43019  snen1g  43513  mnuprdlem2  44262  hoidmv1le  46592  fsetsnf1  47053
  Copyright terms: Public domain W3C validator