Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sneqr | Structured version Visualization version GIF version |
Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.) |
Ref | Expression |
---|---|
sneqr.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sneqr | ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqr.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sneqrg 4767 | . 2 ⊢ (𝐴 ∈ V → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sn 4559 |
This theorem is referenced by: snsssn 4769 mosneq 4770 opth1 5384 propeqop 5415 opthwiener 5422 funsndifnop 7005 canth2 8866 axcc2lem 10123 hashge3el3dif 14128 dis2ndc 22519 axlowdim1 27230 bj-snsetex 35080 poimirlem13 35717 poimirlem14 35718 wopprc 40768 snen1g 41029 mnuprdlem2 41780 hoidmv1le 44022 fsetsnf1 44433 |
Copyright terms: Public domain | W3C validator |