![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sneqr | Structured version Visualization version GIF version |
Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.) |
Ref | Expression |
---|---|
sneqr.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sneqr | ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqr.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sneqrg 4843 | . 2 ⊢ (𝐴 ∈ V → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 Vcvv 3477 {csn 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-sn 4631 |
This theorem is referenced by: snsssn 4845 mosneq 4846 opth1 5485 propeqop 5516 opthwiener 5523 funsndifnop 7170 canth2 9168 axcc2lem 10473 hashge3el3dif 14522 dis2ndc 23483 axlowdim1 28988 bj-snsetex 36945 poimirlem13 37619 poimirlem14 37620 wopprc 43018 snen1g 43513 mnuprdlem2 44268 hoidmv1le 46549 fsetsnf1 47001 |
Copyright terms: Public domain | W3C validator |