![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sneqr | Structured version Visualization version GIF version |
Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.) |
Ref | Expression |
---|---|
sneqr.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sneqr | ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqr.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sneqrg 4864 | . 2 ⊢ (𝐴 ∈ V → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sn 4649 |
This theorem is referenced by: snsssn 4866 mosneq 4867 opth1 5495 propeqop 5526 opthwiener 5533 funsndifnop 7185 canth2 9196 axcc2lem 10505 hashge3el3dif 14536 dis2ndc 23489 axlowdim1 28992 bj-snsetex 36929 poimirlem13 37593 poimirlem14 37594 wopprc 42987 snen1g 43486 mnuprdlem2 44242 hoidmv1le 46515 fsetsnf1 46967 |
Copyright terms: Public domain | W3C validator |