Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sneqr | Structured version Visualization version GIF version |
Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.) |
Ref | Expression |
---|---|
sneqr.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sneqr | ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqr.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sneqrg 4782 | . 2 ⊢ (𝐴 ∈ V → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 {csn 4571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-sn 4572 |
This theorem is referenced by: snsssn 4784 mosneq 4785 opth1 5409 propeqop 5440 opthwiener 5447 funsndifnop 7063 canth2 8974 axcc2lem 10272 hashge3el3dif 14279 dis2ndc 22694 axlowdim1 27463 bj-snsetex 35225 poimirlem13 35862 poimirlem14 35863 wopprc 41069 snen1g 41365 mnuprdlem2 42125 hoidmv1le 44383 fsetsnf1 44811 |
Copyright terms: Public domain | W3C validator |