| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sneqr | Structured version Visualization version GIF version | ||
| Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.) |
| Ref | Expression |
|---|---|
| sneqr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sneqr | ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqr.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sneqrg 4793 | . 2 ⊢ (𝐴 ∈ V → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 {csn 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sn 4580 |
| This theorem is referenced by: snsssn 4795 mosneq 4796 opth1 5422 propeqop 5454 opthwiener 5461 funsndifnop 7089 canth2 9054 axcc2lem 10349 hashge3el3dif 14412 dis2ndc 23363 axlowdim1 28922 bj-snsetex 36939 poimirlem13 37615 poimirlem14 37616 wopprc 43006 snen1g 43500 mnuprdlem2 44249 hoidmv1le 46579 fsetsnf1 47040 |
| Copyright terms: Public domain | W3C validator |