| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sneqr | Structured version Visualization version GIF version | ||
| Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.) |
| Ref | Expression |
|---|---|
| sneqr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sneqr | ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqr.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sneqrg 4815 | . 2 ⊢ (𝐴 ∈ V → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ({𝐴} = {𝐵} → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-sn 4602 |
| This theorem is referenced by: snsssn 4817 mosneq 4818 opth1 5450 propeqop 5482 opthwiener 5489 funsndifnop 7141 canth2 9144 axcc2lem 10450 hashge3el3dif 14505 dis2ndc 23398 axlowdim1 28938 bj-snsetex 36981 poimirlem13 37657 poimirlem14 37658 wopprc 43054 snen1g 43548 mnuprdlem2 44297 hoidmv1le 46623 fsetsnf1 47081 |
| Copyright terms: Public domain | W3C validator |