MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sneqbg Structured version   Visualization version   GIF version

Theorem sneqbg 4810
Description: Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
sneqbg (𝐴𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵))

Proof of Theorem sneqbg
StepHypRef Expression
1 sneqrg 4806 . 2 (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
2 sneq 4602 . 2 (𝐴 = 𝐵 → {𝐴} = {𝐵})
31, 2impbid1 225 1 (𝐴𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {csn 4592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-sn 4593
This theorem is referenced by:  iotaval2  6482  suppval1  8148  suppsnop  8160  fseqdom  9986  infpwfidom  9988  canthwe  10611  s111  14587  initoid  17970  termoid  17971  embedsetcestrclem  18125  mat1dimelbas  22365  mat1dimbas  22366  unidifsnne  32472  altopthg  35962  altopthbg  35963  bj-snglc  36964  f1omptsnlem  37331  fvineqsnf1  37405  suceqsneq  38232  extid  38305  sn-iotalem  42216  eusnsn  47031
  Copyright terms: Public domain W3C validator