| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sneqbg | Structured version Visualization version GIF version | ||
| Description: Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012.) |
| Ref | Expression |
|---|---|
| sneqbg | ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqrg 4806 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | |
| 2 | sneq 4602 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | impbid1 225 | 1 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sn 4593 |
| This theorem is referenced by: iotaval2 6482 suppval1 8148 suppsnop 8160 fseqdom 9986 infpwfidom 9988 canthwe 10611 s111 14587 initoid 17970 termoid 17971 embedsetcestrclem 18125 mat1dimelbas 22365 mat1dimbas 22366 unidifsnne 32472 altopthg 35962 altopthbg 35963 bj-snglc 36964 f1omptsnlem 37331 fvineqsnf1 37405 suceqsneq 38232 extid 38305 sn-iotalem 42216 eusnsn 47031 |
| Copyright terms: Public domain | W3C validator |