MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sneqbg Structured version   Visualization version   GIF version

Theorem sneqbg 4771
Description: Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
sneqbg (𝐴𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵))

Proof of Theorem sneqbg
StepHypRef Expression
1 sneqrg 4767 . 2 (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
2 sneq 4568 . 2 (𝐴 = 𝐵 → {𝐴} = {𝐵})
31, 2impbid1 224 1 (𝐴𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-sn 4559
This theorem is referenced by:  suppval1  7954  suppsnop  7965  fseqdom  9713  infpwfidom  9715  canthwe  10338  s111  14248  initoid  17632  termoid  17633  embedsetcestrclem  17790  mat1dimelbas  21528  mat1dimbas  21529  unidifsnne  30785  altopthg  34196  altopthbg  34197  bj-snglc  35086  f1omptsnlem  35434  fvineqsnf1  35508  extid  36373  sn-iotalem  40117  sn-iotaval  40119  eusnsn  44407
  Copyright terms: Public domain W3C validator