![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sneqbg | Structured version Visualization version GIF version |
Description: Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
sneqbg | ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqrg 4864 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | |
2 | sneq 4658 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
3 | 1, 2 | impbid1 225 | 1 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sn 4649 |
This theorem is referenced by: iotaval2 6541 suppval1 8207 suppsnop 8219 fseqdom 10095 infpwfidom 10097 canthwe 10720 s111 14663 initoid 18068 termoid 18069 embedsetcestrclem 18226 mat1dimelbas 22498 mat1dimbas 22499 unidifsnne 32564 altopthg 35931 altopthbg 35932 bj-snglc 36935 f1omptsnlem 37302 fvineqsnf1 37376 suceqsneq 38192 extid 38266 sn-iotalem 42214 eusnsn 46941 |
Copyright terms: Public domain | W3C validator |