| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sneqbg | Structured version Visualization version GIF version | ||
| Description: Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012.) |
| Ref | Expression |
|---|---|
| sneqbg | ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqrg 4788 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | |
| 2 | sneq 4583 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | impbid1 225 | 1 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sn 4574 |
| This theorem is referenced by: iotaval2 6452 suppval1 8096 suppsnop 8108 fseqdom 9917 infpwfidom 9919 canthwe 10542 s111 14523 initoid 17908 termoid 17909 embedsetcestrclem 18063 mat1dimelbas 22386 mat1dimbas 22387 unidifsnne 32516 altopthg 36011 altopthbg 36012 bj-snglc 37013 f1omptsnlem 37380 fvineqsnf1 37454 extid 38347 suceqsneq 38495 sn-iotalem 42313 eusnsn 47125 |
| Copyright terms: Public domain | W3C validator |