| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sneqbg | Structured version Visualization version GIF version | ||
| Description: Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012.) |
| Ref | Expression |
|---|---|
| sneqbg | ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqrg 4815 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | |
| 2 | sneq 4611 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | impbid1 225 | 1 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-sn 4602 |
| This theorem is referenced by: iotaval2 6499 suppval1 8165 suppsnop 8177 fseqdom 10040 infpwfidom 10042 canthwe 10665 s111 14633 initoid 18014 termoid 18015 embedsetcestrclem 18169 mat1dimelbas 22409 mat1dimbas 22410 unidifsnne 32517 altopthg 35985 altopthbg 35986 bj-snglc 36987 f1omptsnlem 37354 fvineqsnf1 37428 suceqsneq 38255 extid 38328 sn-iotalem 42272 eusnsn 47055 |
| Copyright terms: Public domain | W3C validator |