| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sneqbg | Structured version Visualization version GIF version | ||
| Description: Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012.) |
| Ref | Expression |
|---|---|
| sneqbg | ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqrg 4790 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | |
| 2 | sneq 4587 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | impbid1 225 | 1 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sn 4578 |
| This theorem is referenced by: iotaval2 6453 suppval1 8099 suppsnop 8111 fseqdom 9920 infpwfidom 9922 canthwe 10545 s111 14522 initoid 17908 termoid 17909 embedsetcestrclem 18063 mat1dimelbas 22356 mat1dimbas 22357 unidifsnne 32485 altopthg 35961 altopthbg 35962 bj-snglc 36963 f1omptsnlem 37330 fvineqsnf1 37404 suceqsneq 38231 extid 38304 sn-iotalem 42214 eusnsn 47030 |
| Copyright terms: Public domain | W3C validator |