MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpssi Structured version   Visualization version   GIF version

Theorem tpssi 4839
Description: An unordered triple of elements of a class is a subset of the class. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
Assertion
Ref Expression
tpssi ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)

Proof of Theorem tpssi
StepHypRef Expression
1 df-tp 4633 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
2 prssi 4824 . . . 4 ((𝐴𝐷𝐵𝐷) → {𝐴, 𝐵} ⊆ 𝐷)
323adant3 1131 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐴, 𝐵} ⊆ 𝐷)
4 snssi 4811 . . . 4 (𝐶𝐷 → {𝐶} ⊆ 𝐷)
543ad2ant3 1134 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐶} ⊆ 𝐷)
63, 5unssd 4186 . 2 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷)
71, 6eqsstrid 4030 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2105  cun 3946  wss 3948  {csn 4628  {cpr 4630  {ctp 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-un 3953  df-in 3955  df-ss 3965  df-sn 4629  df-pr 4631  df-tp 4633
This theorem is referenced by:  lcmftp  16580  trgcgrg  28199  cyc3co2  32735  sgnclre  34002  signstf  34041  limsupequzlem  44897  fourierdlem46  45327  fourierdlem102  45383  fourierdlem114  45395  etransclem48  45457
  Copyright terms: Public domain W3C validator