![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpssi | Structured version Visualization version GIF version |
Description: An unordered triple of elements of a class is a subset of the class. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
Ref | Expression |
---|---|
tpssi | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4653 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | prssi 4846 | . . . 4 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ⊆ 𝐷) | |
3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐴, 𝐵} ⊆ 𝐷) |
4 | snssi 4833 | . . . 4 ⊢ (𝐶 ∈ 𝐷 → {𝐶} ⊆ 𝐷) | |
5 | 4 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐶} ⊆ 𝐷) |
6 | 3, 5 | unssd 4215 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷) |
7 | 1, 6 | eqsstrid 4057 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 {csn 4648 {cpr 4650 {ctp 4652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 df-tp 4653 |
This theorem is referenced by: lcmftp 16683 trgcgrg 28541 cyc3co2 33133 sgnclre 34504 signstf 34543 limsupequzlem 45643 fourierdlem46 46073 fourierdlem102 46129 fourierdlem114 46141 etransclem48 46203 grtrissvtx 47795 grtrimap 47797 usgrexmpl2nb0 47846 usgrexmpl2nb3 47849 |
Copyright terms: Public domain | W3C validator |