| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpssi | Structured version Visualization version GIF version | ||
| Description: An unordered triple of elements of a class is a subset of the class. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
| Ref | Expression |
|---|---|
| tpssi | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4578 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | prssi 4770 | . . . 4 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ⊆ 𝐷) | |
| 3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐴, 𝐵} ⊆ 𝐷) |
| 4 | snssi 4757 | . . . 4 ⊢ (𝐶 ∈ 𝐷 → {𝐶} ⊆ 𝐷) | |
| 5 | 4 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐶} ⊆ 𝐷) |
| 6 | 3, 5 | unssd 4139 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷) |
| 7 | 1, 6 | eqsstrid 3968 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 ∪ cun 3895 ⊆ wss 3897 {csn 4573 {cpr 4575 {ctp 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 df-sn 4574 df-pr 4576 df-tp 4578 |
| This theorem is referenced by: lcmftp 16547 trgcgrg 28493 tpssd 32518 sgnclre 32815 cyc3co2 33109 signstf 34579 limsupequzlem 45830 fourierdlem46 46260 fourierdlem102 46316 fourierdlem114 46328 etransclem48 46390 grtrissvtx 48054 grtrimap 48058 usgrexmpl2nb0 48141 usgrexmpl2nb3 48144 |
| Copyright terms: Public domain | W3C validator |