MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpssi Structured version   Visualization version   GIF version

Theorem tpssi 4805
Description: An unordered triple of elements of a class is a subset of the class. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
Assertion
Ref Expression
tpssi ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)

Proof of Theorem tpssi
StepHypRef Expression
1 df-tp 4597 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
2 prssi 4788 . . . 4 ((𝐴𝐷𝐵𝐷) → {𝐴, 𝐵} ⊆ 𝐷)
323adant3 1132 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐴, 𝐵} ⊆ 𝐷)
4 snssi 4775 . . . 4 (𝐶𝐷 → {𝐶} ⊆ 𝐷)
543ad2ant3 1135 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐶} ⊆ 𝐷)
63, 5unssd 4158 . 2 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷)
71, 6eqsstrid 3988 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  cun 3915  wss 3917  {csn 4592  {cpr 4594  {ctp 4596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-un 3922  df-ss 3934  df-sn 4593  df-pr 4595  df-tp 4597
This theorem is referenced by:  lcmftp  16613  trgcgrg  28449  tpssd  32474  sgnclre  32764  cyc3co2  33104  signstf  34564  limsupequzlem  45727  fourierdlem46  46157  fourierdlem102  46213  fourierdlem114  46225  etransclem48  46287  grtrissvtx  47947  grtrimap  47951  usgrexmpl2nb0  48026  usgrexmpl2nb3  48029
  Copyright terms: Public domain W3C validator