| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpssi | Structured version Visualization version GIF version | ||
| Description: An unordered triple of elements of a class is a subset of the class. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
| Ref | Expression |
|---|---|
| tpssi | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4606 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | prssi 4797 | . . . 4 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ⊆ 𝐷) | |
| 3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐴, 𝐵} ⊆ 𝐷) |
| 4 | snssi 4784 | . . . 4 ⊢ (𝐶 ∈ 𝐷 → {𝐶} ⊆ 𝐷) | |
| 5 | 4 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐶} ⊆ 𝐷) |
| 6 | 3, 5 | unssd 4167 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷) |
| 7 | 1, 6 | eqsstrid 3997 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2108 ∪ cun 3924 ⊆ wss 3926 {csn 4601 {cpr 4603 {ctp 4605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-sn 4602 df-pr 4604 df-tp 4606 |
| This theorem is referenced by: lcmftp 16655 trgcgrg 28494 tpssd 32519 sgnclre 32811 cyc3co2 33151 signstf 34598 limsupequzlem 45751 fourierdlem46 46181 fourierdlem102 46237 fourierdlem114 46249 etransclem48 46311 grtrissvtx 47956 grtrimap 47960 usgrexmpl2nb0 48035 usgrexmpl2nb3 48038 |
| Copyright terms: Public domain | W3C validator |