| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpssi | Structured version Visualization version GIF version | ||
| Description: An unordered triple of elements of a class is a subset of the class. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
| Ref | Expression |
|---|---|
| tpssi | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4594 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | prssi 4785 | . . . 4 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ⊆ 𝐷) | |
| 3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐴, 𝐵} ⊆ 𝐷) |
| 4 | snssi 4772 | . . . 4 ⊢ (𝐶 ∈ 𝐷 → {𝐶} ⊆ 𝐷) | |
| 5 | 4 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐶} ⊆ 𝐷) |
| 6 | 3, 5 | unssd 4155 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷) |
| 7 | 1, 6 | eqsstrid 3985 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∪ cun 3912 ⊆ wss 3914 {csn 4589 {cpr 4591 {ctp 4593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-sn 4590 df-pr 4592 df-tp 4594 |
| This theorem is referenced by: lcmftp 16606 trgcgrg 28442 tpssd 32467 sgnclre 32757 cyc3co2 33097 signstf 34557 limsupequzlem 45720 fourierdlem46 46150 fourierdlem102 46206 fourierdlem114 46218 etransclem48 46280 grtrissvtx 47943 grtrimap 47947 usgrexmpl2nb0 48022 usgrexmpl2nb3 48025 |
| Copyright terms: Public domain | W3C validator |