Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimane Structured version   Visualization version   GIF version

Theorem preimane 32650
Description: Different elements have different preimages. (Contributed by Thierry Arnoux, 7-May-2023.)
Hypotheses
Ref Expression
preimane.f (𝜑 → Fun 𝐹)
preimane.x (𝜑𝑋𝑌)
preimane.y (𝜑𝑋 ∈ ran 𝐹)
preimane.1 (𝜑𝑌 ∈ ran 𝐹)
Assertion
Ref Expression
preimane (𝜑 → (𝐹 “ {𝑋}) ≠ (𝐹 “ {𝑌}))

Proof of Theorem preimane
StepHypRef Expression
1 preimane.x . . . 4 (𝜑𝑋𝑌)
2 preimane.y . . . . . 6 (𝜑𝑋 ∈ ran 𝐹)
3 sneqrg 4791 . . . . . 6 (𝑋 ∈ ran 𝐹 → ({𝑋} = {𝑌} → 𝑋 = 𝑌))
42, 3syl 17 . . . . 5 (𝜑 → ({𝑋} = {𝑌} → 𝑋 = 𝑌))
54necon3d 2949 . . . 4 (𝜑 → (𝑋𝑌 → {𝑋} ≠ {𝑌}))
61, 5mpd 15 . . 3 (𝜑 → {𝑋} ≠ {𝑌})
7 preimane.f . . . . 5 (𝜑 → Fun 𝐹)
8 funimacnv 6562 . . . . 5 (Fun 𝐹 → (𝐹 “ (𝐹 “ {𝑋})) = ({𝑋} ∩ ran 𝐹))
97, 8syl 17 . . . 4 (𝜑 → (𝐹 “ (𝐹 “ {𝑋})) = ({𝑋} ∩ ran 𝐹))
102snssd 4761 . . . . 5 (𝜑 → {𝑋} ⊆ ran 𝐹)
11 dfss2 3920 . . . . 5 ({𝑋} ⊆ ran 𝐹 ↔ ({𝑋} ∩ ran 𝐹) = {𝑋})
1210, 11sylib 218 . . . 4 (𝜑 → ({𝑋} ∩ ran 𝐹) = {𝑋})
139, 12eqtrd 2766 . . 3 (𝜑 → (𝐹 “ (𝐹 “ {𝑋})) = {𝑋})
14 funimacnv 6562 . . . . 5 (Fun 𝐹 → (𝐹 “ (𝐹 “ {𝑌})) = ({𝑌} ∩ ran 𝐹))
157, 14syl 17 . . . 4 (𝜑 → (𝐹 “ (𝐹 “ {𝑌})) = ({𝑌} ∩ ran 𝐹))
16 preimane.1 . . . . . 6 (𝜑𝑌 ∈ ran 𝐹)
1716snssd 4761 . . . . 5 (𝜑 → {𝑌} ⊆ ran 𝐹)
18 dfss2 3920 . . . . 5 ({𝑌} ⊆ ran 𝐹 ↔ ({𝑌} ∩ ran 𝐹) = {𝑌})
1917, 18sylib 218 . . . 4 (𝜑 → ({𝑌} ∩ ran 𝐹) = {𝑌})
2015, 19eqtrd 2766 . . 3 (𝜑 → (𝐹 “ (𝐹 “ {𝑌})) = {𝑌})
216, 13, 203netr4d 3005 . 2 (𝜑 → (𝐹 “ (𝐹 “ {𝑋})) ≠ (𝐹 “ (𝐹 “ {𝑌})))
22 imaeq2 6005 . . 3 ((𝐹 “ {𝑋}) = (𝐹 “ {𝑌}) → (𝐹 “ (𝐹 “ {𝑋})) = (𝐹 “ (𝐹 “ {𝑌})))
2322necon3i 2960 . 2 ((𝐹 “ (𝐹 “ {𝑋})) ≠ (𝐹 “ (𝐹 “ {𝑌})) → (𝐹 “ {𝑋}) ≠ (𝐹 “ {𝑌}))
2421, 23syl 17 1 (𝜑 → (𝐹 “ {𝑋}) ≠ (𝐹 “ {𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  cin 3901  wss 3902  {csn 4576  ccnv 5615  ran crn 5617  cima 5619  Fun wfun 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-fun 6483
This theorem is referenced by:  fnpreimac  32651
  Copyright terms: Public domain W3C validator