Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimane Structured version   Visualization version   GIF version

Theorem preimane 32163
Description: Different elements have different preimages. (Contributed by Thierry Arnoux, 7-May-2023.)
Hypotheses
Ref Expression
preimane.f (𝜑 → Fun 𝐹)
preimane.x (𝜑𝑋𝑌)
preimane.y (𝜑𝑋 ∈ ran 𝐹)
preimane.1 (𝜑𝑌 ∈ ran 𝐹)
Assertion
Ref Expression
preimane (𝜑 → (𝐹 “ {𝑋}) ≠ (𝐹 “ {𝑌}))

Proof of Theorem preimane
StepHypRef Expression
1 preimane.x . . . 4 (𝜑𝑋𝑌)
2 preimane.y . . . . . 6 (𝜑𝑋 ∈ ran 𝐹)
3 sneqrg 4840 . . . . . 6 (𝑋 ∈ ran 𝐹 → ({𝑋} = {𝑌} → 𝑋 = 𝑌))
42, 3syl 17 . . . . 5 (𝜑 → ({𝑋} = {𝑌} → 𝑋 = 𝑌))
54necon3d 2960 . . . 4 (𝜑 → (𝑋𝑌 → {𝑋} ≠ {𝑌}))
61, 5mpd 15 . . 3 (𝜑 → {𝑋} ≠ {𝑌})
7 preimane.f . . . . 5 (𝜑 → Fun 𝐹)
8 funimacnv 6629 . . . . 5 (Fun 𝐹 → (𝐹 “ (𝐹 “ {𝑋})) = ({𝑋} ∩ ran 𝐹))
97, 8syl 17 . . . 4 (𝜑 → (𝐹 “ (𝐹 “ {𝑋})) = ({𝑋} ∩ ran 𝐹))
102snssd 4812 . . . . 5 (𝜑 → {𝑋} ⊆ ran 𝐹)
11 df-ss 3965 . . . . 5 ({𝑋} ⊆ ran 𝐹 ↔ ({𝑋} ∩ ran 𝐹) = {𝑋})
1210, 11sylib 217 . . . 4 (𝜑 → ({𝑋} ∩ ran 𝐹) = {𝑋})
139, 12eqtrd 2771 . . 3 (𝜑 → (𝐹 “ (𝐹 “ {𝑋})) = {𝑋})
14 funimacnv 6629 . . . . 5 (Fun 𝐹 → (𝐹 “ (𝐹 “ {𝑌})) = ({𝑌} ∩ ran 𝐹))
157, 14syl 17 . . . 4 (𝜑 → (𝐹 “ (𝐹 “ {𝑌})) = ({𝑌} ∩ ran 𝐹))
16 preimane.1 . . . . . 6 (𝜑𝑌 ∈ ran 𝐹)
1716snssd 4812 . . . . 5 (𝜑 → {𝑌} ⊆ ran 𝐹)
18 df-ss 3965 . . . . 5 ({𝑌} ⊆ ran 𝐹 ↔ ({𝑌} ∩ ran 𝐹) = {𝑌})
1917, 18sylib 217 . . . 4 (𝜑 → ({𝑌} ∩ ran 𝐹) = {𝑌})
2015, 19eqtrd 2771 . . 3 (𝜑 → (𝐹 “ (𝐹 “ {𝑌})) = {𝑌})
216, 13, 203netr4d 3017 . 2 (𝜑 → (𝐹 “ (𝐹 “ {𝑋})) ≠ (𝐹 “ (𝐹 “ {𝑌})))
22 imaeq2 6055 . . 3 ((𝐹 “ {𝑋}) = (𝐹 “ {𝑌}) → (𝐹 “ (𝐹 “ {𝑋})) = (𝐹 “ (𝐹 “ {𝑌})))
2322necon3i 2972 . 2 ((𝐹 “ (𝐹 “ {𝑋})) ≠ (𝐹 “ (𝐹 “ {𝑌})) → (𝐹 “ {𝑋}) ≠ (𝐹 “ {𝑌}))
2421, 23syl 17 1 (𝜑 → (𝐹 “ {𝑋}) ≠ (𝐹 “ {𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  wne 2939  cin 3947  wss 3948  {csn 4628  ccnv 5675  ran crn 5677  cima 5679  Fun wfun 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6545
This theorem is referenced by:  fnpreimac  32164
  Copyright terms: Public domain W3C validator