| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > preimane | Structured version Visualization version GIF version | ||
| Description: Different elements have different preimages. (Contributed by Thierry Arnoux, 7-May-2023.) |
| Ref | Expression |
|---|---|
| preimane.f | ⊢ (𝜑 → Fun 𝐹) |
| preimane.x | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| preimane.y | ⊢ (𝜑 → 𝑋 ∈ ran 𝐹) |
| preimane.1 | ⊢ (𝜑 → 𝑌 ∈ ran 𝐹) |
| Ref | Expression |
|---|---|
| preimane | ⊢ (𝜑 → (◡𝐹 “ {𝑋}) ≠ (◡𝐹 “ {𝑌})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preimane.x | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
| 2 | preimane.y | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ran 𝐹) | |
| 3 | sneqrg 4792 | . . . . . 6 ⊢ (𝑋 ∈ ran 𝐹 → ({𝑋} = {𝑌} → 𝑋 = 𝑌)) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → ({𝑋} = {𝑌} → 𝑋 = 𝑌)) |
| 5 | 4 | necon3d 2950 | . . . 4 ⊢ (𝜑 → (𝑋 ≠ 𝑌 → {𝑋} ≠ {𝑌})) |
| 6 | 1, 5 | mpd 15 | . . 3 ⊢ (𝜑 → {𝑋} ≠ {𝑌}) |
| 7 | preimane.f | . . . . 5 ⊢ (𝜑 → Fun 𝐹) | |
| 8 | funimacnv 6569 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ {𝑋})) = ({𝑋} ∩ ran 𝐹)) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ {𝑋})) = ({𝑋} ∩ ran 𝐹)) |
| 10 | 2 | snssd 4762 | . . . . 5 ⊢ (𝜑 → {𝑋} ⊆ ran 𝐹) |
| 11 | dfss2 3916 | . . . . 5 ⊢ ({𝑋} ⊆ ran 𝐹 ↔ ({𝑋} ∩ ran 𝐹) = {𝑋}) | |
| 12 | 10, 11 | sylib 218 | . . . 4 ⊢ (𝜑 → ({𝑋} ∩ ran 𝐹) = {𝑋}) |
| 13 | 9, 12 | eqtrd 2768 | . . 3 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ {𝑋})) = {𝑋}) |
| 14 | funimacnv 6569 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ {𝑌})) = ({𝑌} ∩ ran 𝐹)) | |
| 15 | 7, 14 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ {𝑌})) = ({𝑌} ∩ ran 𝐹)) |
| 16 | preimane.1 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ran 𝐹) | |
| 17 | 16 | snssd 4762 | . . . . 5 ⊢ (𝜑 → {𝑌} ⊆ ran 𝐹) |
| 18 | dfss2 3916 | . . . . 5 ⊢ ({𝑌} ⊆ ran 𝐹 ↔ ({𝑌} ∩ ran 𝐹) = {𝑌}) | |
| 19 | 17, 18 | sylib 218 | . . . 4 ⊢ (𝜑 → ({𝑌} ∩ ran 𝐹) = {𝑌}) |
| 20 | 15, 19 | eqtrd 2768 | . . 3 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ {𝑌})) = {𝑌}) |
| 21 | 6, 13, 20 | 3netr4d 3006 | . 2 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ {𝑋})) ≠ (𝐹 “ (◡𝐹 “ {𝑌}))) |
| 22 | imaeq2 6011 | . . 3 ⊢ ((◡𝐹 “ {𝑋}) = (◡𝐹 “ {𝑌}) → (𝐹 “ (◡𝐹 “ {𝑋})) = (𝐹 “ (◡𝐹 “ {𝑌}))) | |
| 23 | 22 | necon3i 2961 | . 2 ⊢ ((𝐹 “ (◡𝐹 “ {𝑋})) ≠ (𝐹 “ (◡𝐹 “ {𝑌})) → (◡𝐹 “ {𝑋}) ≠ (◡𝐹 “ {𝑌})) |
| 24 | 21, 23 | syl 17 | 1 ⊢ (𝜑 → (◡𝐹 “ {𝑋}) ≠ (◡𝐹 “ {𝑌})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∩ cin 3897 ⊆ wss 3898 {csn 4577 ◡ccnv 5620 ran crn 5622 “ cima 5624 Fun wfun 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fun 6490 |
| This theorem is referenced by: fnpreimac 32657 |
| Copyright terms: Public domain | W3C validator |