Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > preimane | Structured version Visualization version GIF version |
Description: Different elements have different preimages. (Contributed by Thierry Arnoux, 7-May-2023.) |
Ref | Expression |
---|---|
preimane.f | ⊢ (𝜑 → Fun 𝐹) |
preimane.x | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
preimane.y | ⊢ (𝜑 → 𝑋 ∈ ran 𝐹) |
preimane.1 | ⊢ (𝜑 → 𝑌 ∈ ran 𝐹) |
Ref | Expression |
---|---|
preimane | ⊢ (𝜑 → (◡𝐹 “ {𝑋}) ≠ (◡𝐹 “ {𝑌})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preimane.x | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
2 | preimane.y | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ran 𝐹) | |
3 | sneqrg 4727 | . . . . . 6 ⊢ (𝑋 ∈ ran 𝐹 → ({𝑋} = {𝑌} → 𝑋 = 𝑌)) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → ({𝑋} = {𝑌} → 𝑋 = 𝑌)) |
5 | 4 | necon3d 2972 | . . . 4 ⊢ (𝜑 → (𝑋 ≠ 𝑌 → {𝑋} ≠ {𝑌})) |
6 | 1, 5 | mpd 15 | . . 3 ⊢ (𝜑 → {𝑋} ≠ {𝑌}) |
7 | preimane.f | . . . . 5 ⊢ (𝜑 → Fun 𝐹) | |
8 | funimacnv 6416 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ {𝑋})) = ({𝑋} ∩ ran 𝐹)) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ {𝑋})) = ({𝑋} ∩ ran 𝐹)) |
10 | 2 | snssd 4699 | . . . . 5 ⊢ (𝜑 → {𝑋} ⊆ ran 𝐹) |
11 | df-ss 3875 | . . . . 5 ⊢ ({𝑋} ⊆ ran 𝐹 ↔ ({𝑋} ∩ ran 𝐹) = {𝑋}) | |
12 | 10, 11 | sylib 221 | . . . 4 ⊢ (𝜑 → ({𝑋} ∩ ran 𝐹) = {𝑋}) |
13 | 9, 12 | eqtrd 2793 | . . 3 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ {𝑋})) = {𝑋}) |
14 | funimacnv 6416 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ {𝑌})) = ({𝑌} ∩ ran 𝐹)) | |
15 | 7, 14 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ {𝑌})) = ({𝑌} ∩ ran 𝐹)) |
16 | preimane.1 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ran 𝐹) | |
17 | 16 | snssd 4699 | . . . . 5 ⊢ (𝜑 → {𝑌} ⊆ ran 𝐹) |
18 | df-ss 3875 | . . . . 5 ⊢ ({𝑌} ⊆ ran 𝐹 ↔ ({𝑌} ∩ ran 𝐹) = {𝑌}) | |
19 | 17, 18 | sylib 221 | . . . 4 ⊢ (𝜑 → ({𝑌} ∩ ran 𝐹) = {𝑌}) |
20 | 15, 19 | eqtrd 2793 | . . 3 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ {𝑌})) = {𝑌}) |
21 | 6, 13, 20 | 3netr4d 3028 | . 2 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ {𝑋})) ≠ (𝐹 “ (◡𝐹 “ {𝑌}))) |
22 | imaeq2 5897 | . . 3 ⊢ ((◡𝐹 “ {𝑋}) = (◡𝐹 “ {𝑌}) → (𝐹 “ (◡𝐹 “ {𝑋})) = (𝐹 “ (◡𝐹 “ {𝑌}))) | |
23 | 22 | necon3i 2983 | . 2 ⊢ ((𝐹 “ (◡𝐹 “ {𝑋})) ≠ (𝐹 “ (◡𝐹 “ {𝑌})) → (◡𝐹 “ {𝑋}) ≠ (◡𝐹 “ {𝑌})) |
24 | 21, 23 | syl 17 | 1 ⊢ (𝜑 → (◡𝐹 “ {𝑋}) ≠ (◡𝐹 “ {𝑌})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∩ cin 3857 ⊆ wss 3858 {csn 4522 ◡ccnv 5523 ran crn 5525 “ cima 5527 Fun wfun 6329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-fun 6337 |
This theorem is referenced by: fnpreimac 30532 |
Copyright terms: Public domain | W3C validator |