| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > altopth2 | Structured version Visualization version GIF version | ||
| Description: Equality of the second members of equal alternate ordered pairs, which holds regardless of the first members' sethood. (Contributed by Scott Fenton, 22-Mar-2012.) |
| Ref | Expression |
|---|---|
| altopth2 | ⊢ (𝐵 ∈ 𝑉 → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ → 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | altopthsn 36003 | . 2 ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷})) | |
| 2 | sneqrg 4788 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ({𝐵} = {𝐷} → 𝐵 = 𝐷)) | |
| 3 | 2 | adantld 490 | . 2 ⊢ (𝐵 ∈ 𝑉 → (({𝐴} = {𝐶} ∧ {𝐵} = {𝐷}) → 𝐵 = 𝐷)) |
| 4 | 1, 3 | biimtrid 242 | 1 ⊢ (𝐵 ∈ 𝑉 → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ → 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4573 ⟪caltop 35998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-sn 4574 df-pr 4576 df-altop 36000 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |