Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopth1 Structured version   Visualization version   GIF version

Theorem altopth1 35946
Description: Equality of the first members of equal alternate ordered pairs, which holds regardless of the second members' sethood. (Contributed by Scott Fenton, 22-Mar-2012.)
Assertion
Ref Expression
altopth1 (𝐴𝑉 → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ → 𝐴 = 𝐶))

Proof of Theorem altopth1
StepHypRef Expression
1 altopthsn 35942 . 2 (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷}))
2 sneqrg 4843 . . 3 (𝐴𝑉 → ({𝐴} = {𝐶} → 𝐴 = 𝐶))
32adantrd 491 . 2 (𝐴𝑉 → (({𝐴} = {𝐶} ∧ {𝐵} = {𝐷}) → 𝐴 = 𝐶))
41, 3biimtrid 242 1 (𝐴𝑉 → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ → 𝐴 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  {csn 4630  caltop 35937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-sn 4631  df-pr 4633  df-altop 35939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator