MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnzb Structured version   Visualization version   GIF version

Theorem snnzb 4651
Description: A singleton is nonempty iff its argument is a set. (Contributed by Scott Fenton, 8-May-2018.)
Assertion
Ref Expression
snnzb (𝐴 ∈ V ↔ {𝐴} ≠ ∅)

Proof of Theorem snnzb
StepHypRef Expression
1 snprc 4650 . . 3 𝐴 ∈ V ↔ {𝐴} = ∅)
2 df-ne 2943 . . . 4 ({𝐴} ≠ ∅ ↔ ¬ {𝐴} = ∅)
32con2bii 357 . . 3 ({𝐴} = ∅ ↔ ¬ {𝐴} ≠ ∅)
41, 3bitri 274 . 2 𝐴 ∈ V ↔ ¬ {𝐴} ≠ ∅)
54con4bii 320 1 (𝐴 ∈ V ↔ {𝐴} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  c0 4253  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-dif 3886  df-nul 4254  df-sn 4559
This theorem is referenced by:  lpvtx  27341  loop1cycl  32999  elima4  33656
  Copyright terms: Public domain W3C validator