![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snnzb | Structured version Visualization version GIF version |
Description: A singleton is nonempty iff its argument is a set. (Contributed by Scott Fenton, 8-May-2018.) |
Ref | Expression |
---|---|
snnzb | ⊢ (𝐴 ∈ V ↔ {𝐴} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snprc 4721 | . . 3 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
2 | df-ne 2941 | . . . 4 ⊢ ({𝐴} ≠ ∅ ↔ ¬ {𝐴} = ∅) | |
3 | 2 | con2bii 357 | . . 3 ⊢ ({𝐴} = ∅ ↔ ¬ {𝐴} ≠ ∅) |
4 | 1, 3 | bitri 274 | . 2 ⊢ (¬ 𝐴 ∈ V ↔ ¬ {𝐴} ≠ ∅) |
5 | 4 | con4bii 320 | 1 ⊢ (𝐴 ∈ V ↔ {𝐴} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ∅c0 4322 {csn 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-v 3476 df-dif 3951 df-nul 4323 df-sn 4629 |
This theorem is referenced by: lpvtx 28325 loop1cycl 34123 elima4 34742 |
Copyright terms: Public domain | W3C validator |