| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snnzb | Structured version Visualization version GIF version | ||
| Description: A singleton is nonempty iff its argument is a set. (Contributed by Scott Fenton, 8-May-2018.) |
| Ref | Expression |
|---|---|
| snnzb | ⊢ (𝐴 ∈ V ↔ {𝐴} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snprc 4671 | . . 3 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 2 | df-ne 2931 | . . . 4 ⊢ ({𝐴} ≠ ∅ ↔ ¬ {𝐴} = ∅) | |
| 3 | 2 | con2bii 357 | . . 3 ⊢ ({𝐴} = ∅ ↔ ¬ {𝐴} ≠ ∅) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (¬ 𝐴 ∈ V ↔ ¬ {𝐴} ≠ ∅) |
| 5 | 4 | con4bii 321 | 1 ⊢ (𝐴 ∈ V ↔ {𝐴} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 Vcvv 3438 ∅c0 4284 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-v 3440 df-dif 3902 df-nul 4285 df-sn 4578 |
| This theorem is referenced by: lpvtx 29057 loop1cycl 35192 elima4 35831 |
| Copyright terms: Public domain | W3C validator |