MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnzb Structured version   Visualization version   GIF version

Theorem snnzb 4685
Description: A singleton is nonempty iff its argument is a set. (Contributed by Scott Fenton, 8-May-2018.)
Assertion
Ref Expression
snnzb (𝐴 ∈ V ↔ {𝐴} ≠ ∅)

Proof of Theorem snnzb
StepHypRef Expression
1 snprc 4684 . . 3 𝐴 ∈ V ↔ {𝐴} = ∅)
2 df-ne 2927 . . . 4 ({𝐴} ≠ ∅ ↔ ¬ {𝐴} = ∅)
32con2bii 357 . . 3 ({𝐴} = ∅ ↔ ¬ {𝐴} ≠ ∅)
41, 3bitri 275 . 2 𝐴 ∈ V ↔ ¬ {𝐴} ≠ ∅)
54con4bii 321 1 (𝐴 ∈ V ↔ {𝐴} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  c0 4299  {csn 4592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3452  df-dif 3920  df-nul 4300  df-sn 4593
This theorem is referenced by:  lpvtx  29002  loop1cycl  35131  elima4  35770
  Copyright terms: Public domain W3C validator