Proof of Theorem lpvtx
Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐺 ∈ UHGraph) |
2 | | lpvtx.i |
. . . . . . 7
⊢ 𝐼 = (iEdg‘𝐺) |
3 | 2 | uhgrfun 27445 |
. . . . . 6
⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
4 | 3 | funfnd 6472 |
. . . . 5
⊢ (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼) |
5 | 4 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐼 Fn dom 𝐼) |
6 | | simp2 1136 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐽 ∈ dom 𝐼) |
7 | 2 | uhgrn0 27446 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝐼 Fn dom 𝐼 ∧ 𝐽 ∈ dom 𝐼) → (𝐼‘𝐽) ≠ ∅) |
8 | 1, 5, 6, 7 | syl3anc 1370 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → (𝐼‘𝐽) ≠ ∅) |
9 | | neeq1 3007 |
. . . . 5
⊢ ((𝐼‘𝐽) = {𝐴} → ((𝐼‘𝐽) ≠ ∅ ↔ {𝐴} ≠ ∅)) |
10 | 9 | biimpd 228 |
. . . 4
⊢ ((𝐼‘𝐽) = {𝐴} → ((𝐼‘𝐽) ≠ ∅ → {𝐴} ≠ ∅)) |
11 | 10 | 3ad2ant3 1134 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → ((𝐼‘𝐽) ≠ ∅ → {𝐴} ≠ ∅)) |
12 | 8, 11 | mpd 15 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → {𝐴} ≠ ∅) |
13 | | eqid 2739 |
. . . . . 6
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
14 | 13, 2 | uhgrss 27443 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼) → (𝐼‘𝐽) ⊆ (Vtx‘𝐺)) |
15 | 14 | 3adant3 1131 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → (𝐼‘𝐽) ⊆ (Vtx‘𝐺)) |
16 | | sseq1 3947 |
. . . . 5
⊢ ((𝐼‘𝐽) = {𝐴} → ((𝐼‘𝐽) ⊆ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺))) |
17 | 16 | 3ad2ant3 1134 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → ((𝐼‘𝐽) ⊆ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺))) |
18 | 15, 17 | mpbid 231 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → {𝐴} ⊆ (Vtx‘𝐺)) |
19 | | snnzb 4655 |
. . . 4
⊢ (𝐴 ∈ V ↔ {𝐴} ≠ ∅) |
20 | | snssg 4719 |
. . . 4
⊢ (𝐴 ∈ V → (𝐴 ∈ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺))) |
21 | 19, 20 | sylbir 234 |
. . 3
⊢ ({𝐴} ≠ ∅ → (𝐴 ∈ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺))) |
22 | 18, 21 | syl5ibrcom 246 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → ({𝐴} ≠ ∅ → 𝐴 ∈ (Vtx‘𝐺))) |
23 | 12, 22 | mpd 15 |
1
⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺)) |