MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpvtx Structured version   Visualization version   GIF version

Theorem lpvtx 29046
Description: The endpoints of a loop (which is an edge at index 𝐽) are two (identical) vertices 𝐴. (Contributed by AV, 1-Feb-2021.)
Hypothesis
Ref Expression
lpvtx.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lpvtx ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺))

Proof of Theorem lpvtx
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐺 ∈ UHGraph)
2 lpvtx.i . . . . . . 7 𝐼 = (iEdg‘𝐺)
32uhgrfun 29044 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐼)
43funfnd 6512 . . . . 5 (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼)
543ad2ant1 1133 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐼 Fn dom 𝐼)
6 simp2 1137 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐽 ∈ dom 𝐼)
72uhgrn0 29045 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐼 Fn dom 𝐼𝐽 ∈ dom 𝐼) → (𝐼𝐽) ≠ ∅)
81, 5, 6, 7syl3anc 1373 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → (𝐼𝐽) ≠ ∅)
9 neeq1 2990 . . . . 5 ((𝐼𝐽) = {𝐴} → ((𝐼𝐽) ≠ ∅ ↔ {𝐴} ≠ ∅))
109biimpd 229 . . . 4 ((𝐼𝐽) = {𝐴} → ((𝐼𝐽) ≠ ∅ → {𝐴} ≠ ∅))
11103ad2ant3 1135 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → ((𝐼𝐽) ≠ ∅ → {𝐴} ≠ ∅))
128, 11mpd 15 . 2 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → {𝐴} ≠ ∅)
13 eqid 2731 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
1413, 2uhgrss 29042 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼) → (𝐼𝐽) ⊆ (Vtx‘𝐺))
15143adant3 1132 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → (𝐼𝐽) ⊆ (Vtx‘𝐺))
16 sseq1 3955 . . . . 5 ((𝐼𝐽) = {𝐴} → ((𝐼𝐽) ⊆ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
17163ad2ant3 1135 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → ((𝐼𝐽) ⊆ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
1815, 17mpbid 232 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → {𝐴} ⊆ (Vtx‘𝐺))
19 snnzb 4668 . . . 4 (𝐴 ∈ V ↔ {𝐴} ≠ ∅)
20 snssg 4733 . . . 4 (𝐴 ∈ V → (𝐴 ∈ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
2119, 20sylbir 235 . . 3 ({𝐴} ≠ ∅ → (𝐴 ∈ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
2218, 21syl5ibrcom 247 . 2 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → ({𝐴} ≠ ∅ → 𝐴 ∈ (Vtx‘𝐺)))
2312, 22mpd 15 1 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  wss 3897  c0 4280  {csn 4573  dom cdm 5614   Fn wfn 6476  cfv 6481  Vtxcvtx 28974  iEdgciedg 28975  UHGraphcuhgr 29034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-uhgr 29036
This theorem is referenced by:  lppthon  30131  lp1cycl  30132
  Copyright terms: Public domain W3C validator