MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpvtx Structured version   Visualization version   GIF version

Theorem lpvtx 29085
Description: The endpoints of a loop (which is an edge at index 𝐽) are two (identical) vertices 𝐴. (Contributed by AV, 1-Feb-2021.)
Hypothesis
Ref Expression
lpvtx.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lpvtx ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺))

Proof of Theorem lpvtx
StepHypRef Expression
1 simp1 1137 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐺 ∈ UHGraph)
2 lpvtx.i . . . . . . 7 𝐼 = (iEdg‘𝐺)
32uhgrfun 29083 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐼)
43funfnd 6597 . . . . 5 (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼)
543ad2ant1 1134 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐼 Fn dom 𝐼)
6 simp2 1138 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐽 ∈ dom 𝐼)
72uhgrn0 29084 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐼 Fn dom 𝐼𝐽 ∈ dom 𝐼) → (𝐼𝐽) ≠ ∅)
81, 5, 6, 7syl3anc 1373 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → (𝐼𝐽) ≠ ∅)
9 neeq1 3003 . . . . 5 ((𝐼𝐽) = {𝐴} → ((𝐼𝐽) ≠ ∅ ↔ {𝐴} ≠ ∅))
109biimpd 229 . . . 4 ((𝐼𝐽) = {𝐴} → ((𝐼𝐽) ≠ ∅ → {𝐴} ≠ ∅))
11103ad2ant3 1136 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → ((𝐼𝐽) ≠ ∅ → {𝐴} ≠ ∅))
128, 11mpd 15 . 2 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → {𝐴} ≠ ∅)
13 eqid 2737 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
1413, 2uhgrss 29081 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼) → (𝐼𝐽) ⊆ (Vtx‘𝐺))
15143adant3 1133 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → (𝐼𝐽) ⊆ (Vtx‘𝐺))
16 sseq1 4009 . . . . 5 ((𝐼𝐽) = {𝐴} → ((𝐼𝐽) ⊆ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
17163ad2ant3 1136 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → ((𝐼𝐽) ⊆ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
1815, 17mpbid 232 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → {𝐴} ⊆ (Vtx‘𝐺))
19 snnzb 4718 . . . 4 (𝐴 ∈ V ↔ {𝐴} ≠ ∅)
20 snssg 4783 . . . 4 (𝐴 ∈ V → (𝐴 ∈ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
2119, 20sylbir 235 . . 3 ({𝐴} ≠ ∅ → (𝐴 ∈ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
2218, 21syl5ibrcom 247 . 2 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → ({𝐴} ≠ ∅ → 𝐴 ∈ (Vtx‘𝐺)))
2312, 22mpd 15 1 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  wss 3951  c0 4333  {csn 4626  dom cdm 5685   Fn wfn 6556  cfv 6561  Vtxcvtx 29013  iEdgciedg 29014  UHGraphcuhgr 29073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-uhgr 29075
This theorem is referenced by:  lppthon  30170  lp1cycl  30171
  Copyright terms: Public domain W3C validator