MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpvtx Structured version   Visualization version   GIF version

Theorem lpvtx 29002
Description: The endpoints of a loop (which is an edge at index 𝐽) are two (identical) vertices 𝐴. (Contributed by AV, 1-Feb-2021.)
Hypothesis
Ref Expression
lpvtx.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lpvtx ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺))

Proof of Theorem lpvtx
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐺 ∈ UHGraph)
2 lpvtx.i . . . . . . 7 𝐼 = (iEdg‘𝐺)
32uhgrfun 29000 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐼)
43funfnd 6550 . . . . 5 (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼)
543ad2ant1 1133 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐼 Fn dom 𝐼)
6 simp2 1137 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐽 ∈ dom 𝐼)
72uhgrn0 29001 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐼 Fn dom 𝐼𝐽 ∈ dom 𝐼) → (𝐼𝐽) ≠ ∅)
81, 5, 6, 7syl3anc 1373 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → (𝐼𝐽) ≠ ∅)
9 neeq1 2988 . . . . 5 ((𝐼𝐽) = {𝐴} → ((𝐼𝐽) ≠ ∅ ↔ {𝐴} ≠ ∅))
109biimpd 229 . . . 4 ((𝐼𝐽) = {𝐴} → ((𝐼𝐽) ≠ ∅ → {𝐴} ≠ ∅))
11103ad2ant3 1135 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → ((𝐼𝐽) ≠ ∅ → {𝐴} ≠ ∅))
128, 11mpd 15 . 2 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → {𝐴} ≠ ∅)
13 eqid 2730 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
1413, 2uhgrss 28998 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼) → (𝐼𝐽) ⊆ (Vtx‘𝐺))
15143adant3 1132 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → (𝐼𝐽) ⊆ (Vtx‘𝐺))
16 sseq1 3975 . . . . 5 ((𝐼𝐽) = {𝐴} → ((𝐼𝐽) ⊆ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
17163ad2ant3 1135 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → ((𝐼𝐽) ⊆ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
1815, 17mpbid 232 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → {𝐴} ⊆ (Vtx‘𝐺))
19 snnzb 4685 . . . 4 (𝐴 ∈ V ↔ {𝐴} ≠ ∅)
20 snssg 4750 . . . 4 (𝐴 ∈ V → (𝐴 ∈ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
2119, 20sylbir 235 . . 3 ({𝐴} ≠ ∅ → (𝐴 ∈ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
2218, 21syl5ibrcom 247 . 2 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → ({𝐴} ≠ ∅ → 𝐴 ∈ (Vtx‘𝐺)))
2312, 22mpd 15 1 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  wss 3917  c0 4299  {csn 4592  dom cdm 5641   Fn wfn 6509  cfv 6514  Vtxcvtx 28930  iEdgciedg 28931  UHGraphcuhgr 28990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-uhgr 28992
This theorem is referenced by:  lppthon  30087  lp1cycl  30088
  Copyright terms: Public domain W3C validator