MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpvtx Structured version   Visualization version   GIF version

Theorem lpvtx 26861
Description: The endpoints of a loop (which is an edge at index 𝐽) are two (identical) vertices 𝐴. (Contributed by AV, 1-Feb-2021.)
Hypothesis
Ref Expression
lpvtx.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lpvtx ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺))

Proof of Theorem lpvtx
StepHypRef Expression
1 simp1 1133 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐺 ∈ UHGraph)
2 lpvtx.i . . . . . . 7 𝐼 = (iEdg‘𝐺)
32uhgrfun 26859 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐼)
43funfnd 6355 . . . . 5 (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼)
543ad2ant1 1130 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐼 Fn dom 𝐼)
6 simp2 1134 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐽 ∈ dom 𝐼)
72uhgrn0 26860 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐼 Fn dom 𝐼𝐽 ∈ dom 𝐼) → (𝐼𝐽) ≠ ∅)
81, 5, 6, 7syl3anc 1368 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → (𝐼𝐽) ≠ ∅)
9 neeq1 3049 . . . . 5 ((𝐼𝐽) = {𝐴} → ((𝐼𝐽) ≠ ∅ ↔ {𝐴} ≠ ∅))
109biimpd 232 . . . 4 ((𝐼𝐽) = {𝐴} → ((𝐼𝐽) ≠ ∅ → {𝐴} ≠ ∅))
11103ad2ant3 1132 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → ((𝐼𝐽) ≠ ∅ → {𝐴} ≠ ∅))
128, 11mpd 15 . 2 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → {𝐴} ≠ ∅)
13 eqid 2798 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
1413, 2uhgrss 26857 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼) → (𝐼𝐽) ⊆ (Vtx‘𝐺))
15143adant3 1129 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → (𝐼𝐽) ⊆ (Vtx‘𝐺))
16 sseq1 3940 . . . . 5 ((𝐼𝐽) = {𝐴} → ((𝐼𝐽) ⊆ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
17163ad2ant3 1132 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → ((𝐼𝐽) ⊆ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
1815, 17mpbid 235 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → {𝐴} ⊆ (Vtx‘𝐺))
19 snnzb 4614 . . . 4 (𝐴 ∈ V ↔ {𝐴} ≠ ∅)
20 snssg 4678 . . . 4 (𝐴 ∈ V → (𝐴 ∈ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
2119, 20sylbir 238 . . 3 ({𝐴} ≠ ∅ → (𝐴 ∈ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
2218, 21syl5ibrcom 250 . 2 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → ({𝐴} ≠ ∅ → 𝐴 ∈ (Vtx‘𝐺)))
2312, 22mpd 15 1 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  wss 3881  c0 4243  {csn 4525  dom cdm 5519   Fn wfn 6319  cfv 6324  Vtxcvtx 26789  iEdgciedg 26790  UHGraphcuhgr 26849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-uhgr 26851
This theorem is referenced by:  lppthon  27936  lp1cycl  27937
  Copyright terms: Public domain W3C validator