MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snssb Structured version   Visualization version   GIF version

Theorem snssb 4787
Description: Characterization of the inclusion of a singleton in a class. (Contributed by BJ, 1-Jan-2025.)
Assertion
Ref Expression
snssb ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴𝐵))

Proof of Theorem snssb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ss 3980 . 2 ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵))
2 velsn 4647 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
32imbi1i 349 . . 3 ((𝑥 ∈ {𝐴} → 𝑥𝐵) ↔ (𝑥 = 𝐴𝑥𝐵))
43albii 1816 . 2 (∀𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵) ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵))
5 eleq1 2827 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
65pm5.74i 271 . . . 4 ((𝑥 = 𝐴𝑥𝐵) ↔ (𝑥 = 𝐴𝐴𝐵))
76albii 1816 . . 3 (∀𝑥(𝑥 = 𝐴𝑥𝐵) ↔ ∀𝑥(𝑥 = 𝐴𝐴𝐵))
8 19.23v 1940 . . 3 (∀𝑥(𝑥 = 𝐴𝐴𝐵) ↔ (∃𝑥 𝑥 = 𝐴𝐴𝐵))
9 isset 3492 . . . . 5 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
109bicomi 224 . . . 4 (∃𝑥 𝑥 = 𝐴𝐴 ∈ V)
1110imbi1i 349 . . 3 ((∃𝑥 𝑥 = 𝐴𝐴𝐵) ↔ (𝐴 ∈ V → 𝐴𝐵))
127, 8, 113bitri 297 . 2 (∀𝑥(𝑥 = 𝐴𝑥𝐵) ↔ (𝐴 ∈ V → 𝐴𝐵))
131, 4, 123bitri 297 1 ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wex 1776  wcel 2106  Vcvv 3478  wss 3963  {csn 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-ss 3980  df-sn 4632
This theorem is referenced by:  snssg  4788
  Copyright terms: Public domain W3C validator