MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snssb Structured version   Visualization version   GIF version

Theorem snssb 4807
Description: Characterization of the inclusion of a singleton in a class. (Contributed by BJ, 1-Jan-2025.)
Assertion
Ref Expression
snssb ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴𝐵))

Proof of Theorem snssb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ss 3993 . 2 ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵))
2 velsn 4664 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
32imbi1i 349 . . 3 ((𝑥 ∈ {𝐴} → 𝑥𝐵) ↔ (𝑥 = 𝐴𝑥𝐵))
43albii 1817 . 2 (∀𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵) ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵))
5 eleq1 2832 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
65pm5.74i 271 . . . 4 ((𝑥 = 𝐴𝑥𝐵) ↔ (𝑥 = 𝐴𝐴𝐵))
76albii 1817 . . 3 (∀𝑥(𝑥 = 𝐴𝑥𝐵) ↔ ∀𝑥(𝑥 = 𝐴𝐴𝐵))
8 19.23v 1941 . . 3 (∀𝑥(𝑥 = 𝐴𝐴𝐵) ↔ (∃𝑥 𝑥 = 𝐴𝐴𝐵))
9 isset 3502 . . . . 5 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
109bicomi 224 . . . 4 (∃𝑥 𝑥 = 𝐴𝐴 ∈ V)
1110imbi1i 349 . . 3 ((∃𝑥 𝑥 = 𝐴𝐴𝐵) ↔ (𝐴 ∈ V → 𝐴𝐵))
127, 8, 113bitri 297 . 2 (∀𝑥(𝑥 = 𝐴𝑥𝐵) ↔ (𝐴 ∈ V → 𝐴𝐵))
131, 4, 123bitri 297 1 ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  wss 3976  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-sn 4649
This theorem is referenced by:  snssg  4808
  Copyright terms: Public domain W3C validator