![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snssb | Structured version Visualization version GIF version |
Description: Characterization of the inclusion of a singleton in a class. (Contributed by BJ, 1-Jan-2025.) |
Ref | Expression |
---|---|
snssb | ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3980 | . 2 ⊢ ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) | |
2 | velsn 4647 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
3 | 2 | imbi1i 349 | . . 3 ⊢ ((𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ↔ (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
4 | 3 | albii 1816 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
5 | eleq1 2827 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
6 | 5 | pm5.74i 271 | . . . 4 ⊢ ((𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) |
7 | 6 | albii 1816 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) |
8 | 19.23v 1940 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝐴 ∈ 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) | |
9 | isset 3492 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
10 | 9 | bicomi 224 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ V) |
11 | 10 | imbi1i 349 | . . 3 ⊢ ((∃𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵) ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) |
12 | 7, 8, 11 | 3bitri 297 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) |
13 | 1, 4, 12 | 3bitri 297 | 1 ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 {csn 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-sn 4632 |
This theorem is referenced by: snssg 4788 |
Copyright terms: Public domain | W3C validator |