Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snssb | Structured version Visualization version GIF version |
Description: Characterization of the inclusion of a singleton in a class. (Contributed by BJ, 1-Jan-2025.) |
Ref | Expression |
---|---|
snssb | ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3916 | . 2 ⊢ ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) | |
2 | velsn 4586 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
3 | 2 | imbi1i 349 | . . 3 ⊢ ((𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ↔ (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
4 | 3 | albii 1820 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
5 | eleq1 2824 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
6 | 5 | pm5.74i 270 | . . . 4 ⊢ ((𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) |
7 | 6 | albii 1820 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) |
8 | 19.23v 1944 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝐴 ∈ 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) | |
9 | isset 3453 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
10 | 9 | bicomi 223 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ V) |
11 | 10 | imbi1i 349 | . . 3 ⊢ ((∃𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵) ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) |
12 | 7, 8, 11 | 3bitri 296 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) |
13 | 1, 4, 12 | 3bitri 296 | 1 ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 = wceq 1540 ∃wex 1780 ∈ wcel 2105 Vcvv 3440 ⊆ wss 3896 {csn 4570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3442 df-in 3903 df-ss 3913 df-sn 4571 |
This theorem is referenced by: snssg 4728 |
Copyright terms: Public domain | W3C validator |