Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wemapso2 | Structured version Visualization version GIF version |
Description: An alternative to having a well-order on 𝑅 in wemapso 9240 is to restrict the function set to finitely-supported functions. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.) |
Ref | Expression |
---|---|
wemapso.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
wemapso2.u | ⊢ 𝑈 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} |
Ref | Expression |
---|---|
wemapso2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wemapso.t | . . . 4 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
2 | wemapso2.u | . . . 4 ⊢ 𝑈 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} | |
3 | 1, 2 | wemapso2lem 9241 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) ∧ 𝑍 ∈ V) → 𝑇 Or 𝑈) |
4 | 3 | expcom 413 | . 2 ⊢ (𝑍 ∈ V → ((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or 𝑈)) |
5 | so0 5530 | . . . 4 ⊢ 𝑇 Or ∅ | |
6 | relfsupp 9060 | . . . . . . . . . 10 ⊢ Rel finSupp | |
7 | 6 | brrelex2i 5635 | . . . . . . . . 9 ⊢ (𝑥 finSupp 𝑍 → 𝑍 ∈ V) |
8 | 7 | con3i 154 | . . . . . . . 8 ⊢ (¬ 𝑍 ∈ V → ¬ 𝑥 finSupp 𝑍) |
9 | 8 | ralrimivw 3108 | . . . . . . 7 ⊢ (¬ 𝑍 ∈ V → ∀𝑥 ∈ (𝐵 ↑m 𝐴) ¬ 𝑥 finSupp 𝑍) |
10 | rabeq0 4315 | . . . . . . 7 ⊢ ({𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅ ↔ ∀𝑥 ∈ (𝐵 ↑m 𝐴) ¬ 𝑥 finSupp 𝑍) | |
11 | 9, 10 | sylibr 233 | . . . . . 6 ⊢ (¬ 𝑍 ∈ V → {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅) |
12 | 2, 11 | eqtrid 2790 | . . . . 5 ⊢ (¬ 𝑍 ∈ V → 𝑈 = ∅) |
13 | soeq2 5516 | . . . . 5 ⊢ (𝑈 = ∅ → (𝑇 Or 𝑈 ↔ 𝑇 Or ∅)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (¬ 𝑍 ∈ V → (𝑇 Or 𝑈 ↔ 𝑇 Or ∅)) |
15 | 5, 14 | mpbiri 257 | . . 3 ⊢ (¬ 𝑍 ∈ V → 𝑇 Or 𝑈) |
16 | 15 | a1d 25 | . 2 ⊢ (¬ 𝑍 ∈ V → ((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or 𝑈)) |
17 | 4, 16 | pm2.61i 182 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 {crab 3067 Vcvv 3422 ∅c0 4253 class class class wbr 5070 {copab 5132 Or wor 5493 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 finSupp cfsupp 9058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-1o 8267 df-map 8575 df-en 8692 df-fin 8695 df-fsupp 9059 |
This theorem is referenced by: oemapso 9370 |
Copyright terms: Public domain | W3C validator |