![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wemapso2 | Structured version Visualization version GIF version |
Description: An alternative to having a well-order on 𝑅 in wemapso 8804 is to restrict the function set to finitely-supported functions. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.) |
Ref | Expression |
---|---|
wemapso.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
wemapso2.u | ⊢ 𝑈 = {𝑥 ∈ (𝐵 ↑𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} |
Ref | Expression |
---|---|
wemapso2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wemapso.t | . . . 4 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
2 | wemapso2.u | . . . 4 ⊢ 𝑈 = {𝑥 ∈ (𝐵 ↑𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} | |
3 | 1, 2 | wemapso2lem 8805 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) ∧ 𝑍 ∈ V) → 𝑇 Or 𝑈) |
4 | 3 | expcom 406 | . 2 ⊢ (𝑍 ∈ V → ((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or 𝑈)) |
5 | so0 5355 | . . . 4 ⊢ 𝑇 Or ∅ | |
6 | relfsupp 8624 | . . . . . . . . . 10 ⊢ Rel finSupp | |
7 | 6 | brrelex2i 5453 | . . . . . . . . 9 ⊢ (𝑥 finSupp 𝑍 → 𝑍 ∈ V) |
8 | 7 | con3i 152 | . . . . . . . 8 ⊢ (¬ 𝑍 ∈ V → ¬ 𝑥 finSupp 𝑍) |
9 | 8 | ralrimivw 3127 | . . . . . . 7 ⊢ (¬ 𝑍 ∈ V → ∀𝑥 ∈ (𝐵 ↑𝑚 𝐴) ¬ 𝑥 finSupp 𝑍) |
10 | rabeq0 4218 | . . . . . . 7 ⊢ ({𝑥 ∈ (𝐵 ↑𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅ ↔ ∀𝑥 ∈ (𝐵 ↑𝑚 𝐴) ¬ 𝑥 finSupp 𝑍) | |
11 | 9, 10 | sylibr 226 | . . . . . 6 ⊢ (¬ 𝑍 ∈ V → {𝑥 ∈ (𝐵 ↑𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅) |
12 | 2, 11 | syl5eq 2820 | . . . . 5 ⊢ (¬ 𝑍 ∈ V → 𝑈 = ∅) |
13 | soeq2 5341 | . . . . 5 ⊢ (𝑈 = ∅ → (𝑇 Or 𝑈 ↔ 𝑇 Or ∅)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (¬ 𝑍 ∈ V → (𝑇 Or 𝑈 ↔ 𝑇 Or ∅)) |
15 | 5, 14 | mpbiri 250 | . . 3 ⊢ (¬ 𝑍 ∈ V → 𝑇 Or 𝑈) |
16 | 15 | a1d 25 | . 2 ⊢ (¬ 𝑍 ∈ V → ((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or 𝑈)) |
17 | 4, 16 | pm2.61i 177 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ∀wral 3082 ∃wrex 3083 {crab 3086 Vcvv 3409 ∅c0 4172 class class class wbr 4923 {copab 4985 Or wor 5319 ‘cfv 6182 (class class class)co 6970 ↑𝑚 cmap 8200 finSupp cfsupp 8622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7495 df-2nd 7496 df-supp 7628 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-1o 7899 df-oadd 7903 df-er 8083 df-map 8202 df-en 8301 df-fin 8304 df-fsupp 8623 |
This theorem is referenced by: oemapso 8933 |
Copyright terms: Public domain | W3C validator |