MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemapso2 Structured version   Visualization version   GIF version

Theorem wemapso2 9434
Description: An alternative to having a well-order on 𝑅 in wemapso 9432 is to restrict the function set to finitely-supported functions. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.)
Hypotheses
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
wemapso2.u 𝑈 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
Assertion
Ref Expression
wemapso2 ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧   𝑥,𝑍
Allowed substitution hints:   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)   𝑍(𝑦,𝑧,𝑤)

Proof of Theorem wemapso2
StepHypRef Expression
1 wemapso.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
2 wemapso2.u . . . 4 𝑈 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
31, 2wemapso2lem 9433 . . 3 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍 ∈ V) → 𝑇 Or 𝑈)
43expcom 413 . 2 (𝑍 ∈ V → ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈))
5 so0 5557 . . . 4 𝑇 Or ∅
6 relfsupp 9242 . . . . . . . . . 10 Rel finSupp
76brrelex2i 5668 . . . . . . . . 9 (𝑥 finSupp 𝑍𝑍 ∈ V)
87con3i 154 . . . . . . . 8 𝑍 ∈ V → ¬ 𝑥 finSupp 𝑍)
98ralrimivw 3128 . . . . . . 7 𝑍 ∈ V → ∀𝑥 ∈ (𝐵m 𝐴) ¬ 𝑥 finSupp 𝑍)
10 rabeq0 4333 . . . . . . 7 ({𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅ ↔ ∀𝑥 ∈ (𝐵m 𝐴) ¬ 𝑥 finSupp 𝑍)
119, 10sylibr 234 . . . . . 6 𝑍 ∈ V → {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅)
122, 11eqtrid 2778 . . . . 5 𝑍 ∈ V → 𝑈 = ∅)
13 soeq2 5541 . . . . 5 (𝑈 = ∅ → (𝑇 Or 𝑈𝑇 Or ∅))
1412, 13syl 17 . . . 4 𝑍 ∈ V → (𝑇 Or 𝑈𝑇 Or ∅))
155, 14mpbiri 258 . . 3 𝑍 ∈ V → 𝑇 Or 𝑈)
1615a1d 25 . 2 𝑍 ∈ V → ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈))
174, 16pm2.61i 182 1 ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  c0 4278   class class class wbr 5086  {copab 5148   Or wor 5518  cfv 6476  (class class class)co 7341  m cmap 8745   finSupp cfsupp 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-1o 8380  df-map 8747  df-en 8865  df-fin 8868  df-fsupp 9241
This theorem is referenced by:  oemapso  9567
  Copyright terms: Public domain W3C validator