MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemapso2 Structured version   Visualization version   GIF version

Theorem wemapso2 9019
Description: An alternative to having a well-order on 𝑅 in wemapso 9017 is to restrict the function set to finitely-supported functions. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.)
Hypotheses
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
wemapso2.u 𝑈 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
Assertion
Ref Expression
wemapso2 ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧   𝑥,𝑍
Allowed substitution hints:   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)   𝑍(𝑦,𝑧,𝑤)

Proof of Theorem wemapso2
StepHypRef Expression
1 wemapso.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
2 wemapso2.u . . . 4 𝑈 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
31, 2wemapso2lem 9018 . . 3 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍 ∈ V) → 𝑇 Or 𝑈)
43expcom 416 . 2 (𝑍 ∈ V → ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈))
5 so0 5511 . . . 4 𝑇 Or ∅
6 relfsupp 8837 . . . . . . . . . 10 Rel finSupp
76brrelex2i 5611 . . . . . . . . 9 (𝑥 finSupp 𝑍𝑍 ∈ V)
87con3i 157 . . . . . . . 8 𝑍 ∈ V → ¬ 𝑥 finSupp 𝑍)
98ralrimivw 3185 . . . . . . 7 𝑍 ∈ V → ∀𝑥 ∈ (𝐵m 𝐴) ¬ 𝑥 finSupp 𝑍)
10 rabeq0 4340 . . . . . . 7 ({𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅ ↔ ∀𝑥 ∈ (𝐵m 𝐴) ¬ 𝑥 finSupp 𝑍)
119, 10sylibr 236 . . . . . 6 𝑍 ∈ V → {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅)
122, 11syl5eq 2870 . . . . 5 𝑍 ∈ V → 𝑈 = ∅)
13 soeq2 5497 . . . . 5 (𝑈 = ∅ → (𝑇 Or 𝑈𝑇 Or ∅))
1412, 13syl 17 . . . 4 𝑍 ∈ V → (𝑇 Or 𝑈𝑇 Or ∅))
155, 14mpbiri 260 . . 3 𝑍 ∈ V → 𝑇 Or 𝑈)
1615a1d 25 . 2 𝑍 ∈ V → ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈))
174, 16pm2.61i 184 1 ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  c0 4293   class class class wbr 5068  {copab 5130   Or wor 5475  cfv 6357  (class class class)co 7158  m cmap 8408   finSupp cfsupp 8835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-fin 8515  df-fsupp 8836
This theorem is referenced by:  oemapso  9147
  Copyright terms: Public domain W3C validator