![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wemapso2 | Structured version Visualization version GIF version |
Description: An alternative to having a well-order on 𝑅 in wemapso 9620 is to restrict the function set to finitely-supported functions. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.) |
Ref | Expression |
---|---|
wemapso.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
wemapso2.u | ⊢ 𝑈 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} |
Ref | Expression |
---|---|
wemapso2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wemapso.t | . . . 4 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
2 | wemapso2.u | . . . 4 ⊢ 𝑈 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} | |
3 | 1, 2 | wemapso2lem 9621 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) ∧ 𝑍 ∈ V) → 𝑇 Or 𝑈) |
4 | 3 | expcom 413 | . 2 ⊢ (𝑍 ∈ V → ((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or 𝑈)) |
5 | so0 5645 | . . . 4 ⊢ 𝑇 Or ∅ | |
6 | relfsupp 9433 | . . . . . . . . . 10 ⊢ Rel finSupp | |
7 | 6 | brrelex2i 5757 | . . . . . . . . 9 ⊢ (𝑥 finSupp 𝑍 → 𝑍 ∈ V) |
8 | 7 | con3i 154 | . . . . . . . 8 ⊢ (¬ 𝑍 ∈ V → ¬ 𝑥 finSupp 𝑍) |
9 | 8 | ralrimivw 3156 | . . . . . . 7 ⊢ (¬ 𝑍 ∈ V → ∀𝑥 ∈ (𝐵 ↑m 𝐴) ¬ 𝑥 finSupp 𝑍) |
10 | rabeq0 4411 | . . . . . . 7 ⊢ ({𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅ ↔ ∀𝑥 ∈ (𝐵 ↑m 𝐴) ¬ 𝑥 finSupp 𝑍) | |
11 | 9, 10 | sylibr 234 | . . . . . 6 ⊢ (¬ 𝑍 ∈ V → {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅) |
12 | 2, 11 | eqtrid 2792 | . . . . 5 ⊢ (¬ 𝑍 ∈ V → 𝑈 = ∅) |
13 | soeq2 5630 | . . . . 5 ⊢ (𝑈 = ∅ → (𝑇 Or 𝑈 ↔ 𝑇 Or ∅)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (¬ 𝑍 ∈ V → (𝑇 Or 𝑈 ↔ 𝑇 Or ∅)) |
15 | 5, 14 | mpbiri 258 | . . 3 ⊢ (¬ 𝑍 ∈ V → 𝑇 Or 𝑈) |
16 | 15 | a1d 25 | . 2 ⊢ (¬ 𝑍 ∈ V → ((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or 𝑈)) |
17 | 4, 16 | pm2.61i 182 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 {crab 3443 Vcvv 3488 ∅c0 4352 class class class wbr 5166 {copab 5228 Or wor 5606 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 finSupp cfsupp 9431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-1o 8522 df-map 8886 df-en 9004 df-fin 9007 df-fsupp 9432 |
This theorem is referenced by: oemapso 9751 |
Copyright terms: Public domain | W3C validator |