MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemapso2 Structured version   Visualization version   GIF version

Theorem wemapso2 9622
Description: An alternative to having a well-order on 𝑅 in wemapso 9620 is to restrict the function set to finitely-supported functions. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.)
Hypotheses
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
wemapso2.u 𝑈 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
Assertion
Ref Expression
wemapso2 ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧   𝑥,𝑍
Allowed substitution hints:   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)   𝑍(𝑦,𝑧,𝑤)

Proof of Theorem wemapso2
StepHypRef Expression
1 wemapso.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
2 wemapso2.u . . . 4 𝑈 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
31, 2wemapso2lem 9621 . . 3 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍 ∈ V) → 𝑇 Or 𝑈)
43expcom 413 . 2 (𝑍 ∈ V → ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈))
5 so0 5645 . . . 4 𝑇 Or ∅
6 relfsupp 9433 . . . . . . . . . 10 Rel finSupp
76brrelex2i 5757 . . . . . . . . 9 (𝑥 finSupp 𝑍𝑍 ∈ V)
87con3i 154 . . . . . . . 8 𝑍 ∈ V → ¬ 𝑥 finSupp 𝑍)
98ralrimivw 3156 . . . . . . 7 𝑍 ∈ V → ∀𝑥 ∈ (𝐵m 𝐴) ¬ 𝑥 finSupp 𝑍)
10 rabeq0 4411 . . . . . . 7 ({𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅ ↔ ∀𝑥 ∈ (𝐵m 𝐴) ¬ 𝑥 finSupp 𝑍)
119, 10sylibr 234 . . . . . 6 𝑍 ∈ V → {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅)
122, 11eqtrid 2792 . . . . 5 𝑍 ∈ V → 𝑈 = ∅)
13 soeq2 5630 . . . . 5 (𝑈 = ∅ → (𝑇 Or 𝑈𝑇 Or ∅))
1412, 13syl 17 . . . 4 𝑍 ∈ V → (𝑇 Or 𝑈𝑇 Or ∅))
155, 14mpbiri 258 . . 3 𝑍 ∈ V → 𝑇 Or 𝑈)
1615a1d 25 . 2 𝑍 ∈ V → ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈))
174, 16pm2.61i 182 1 ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  c0 4352   class class class wbr 5166  {copab 5228   Or wor 5606  cfv 6573  (class class class)co 7448  m cmap 8884   finSupp cfsupp 9431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-1o 8522  df-map 8886  df-en 9004  df-fin 9007  df-fsupp 9432
This theorem is referenced by:  oemapso  9751
  Copyright terms: Public domain W3C validator