| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > we0 | Structured version Visualization version GIF version | ||
| Description: Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.) |
| Ref | Expression |
|---|---|
| we0 | ⊢ 𝑅 We ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fr0 5629 | . 2 ⊢ 𝑅 Fr ∅ | |
| 2 | so0 5596 | . 2 ⊢ 𝑅 Or ∅ | |
| 3 | df-we 5605 | . 2 ⊢ (𝑅 We ∅ ↔ (𝑅 Fr ∅ ∧ 𝑅 Or ∅)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝑅 We ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4306 Or wor 5557 Fr wfr 5600 We wwe 5602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5117 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 |
| This theorem is referenced by: ord0 6403 cantnf0 9681 cantnf 9699 wemapwe 9703 ltweuz 13968 |
| Copyright terms: Public domain | W3C validator |