MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  we0 Structured version   Visualization version   GIF version

Theorem we0 5633
Description: Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
we0 𝑅 We ∅

Proof of Theorem we0
StepHypRef Expression
1 fr0 5616 . 2 𝑅 Fr ∅
2 so0 5584 . 2 𝑅 Or ∅
3 df-we 5593 . 2 (𝑅 We ∅ ↔ (𝑅 Fr ∅ ∧ 𝑅 Or ∅))
41, 2, 3mpbir2an 711 1 𝑅 We ∅
Colors of variables: wff setvar class
Syntax hints:  c0 4296   Or wor 5545   Fr wfr 5588   We wwe 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-po 5546  df-so 5547  df-fr 5591  df-we 5593
This theorem is referenced by:  ord0  6386  cantnf0  9628  cantnf  9646  wemapwe  9650  ltweuz  13926
  Copyright terms: Public domain W3C validator