| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > we0 | Structured version Visualization version GIF version | ||
| Description: Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.) |
| Ref | Expression |
|---|---|
| we0 | ⊢ 𝑅 We ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fr0 5599 | . 2 ⊢ 𝑅 Fr ∅ | |
| 2 | so0 5567 | . 2 ⊢ 𝑅 Or ∅ | |
| 3 | df-we 5576 | . 2 ⊢ (𝑅 We ∅ ↔ (𝑅 Fr ∅ ∧ 𝑅 Or ∅)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝑅 We ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4284 Or wor 5528 Fr wfr 5571 We wwe 5573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 |
| This theorem is referenced by: ord0 6368 cantnf0 9575 cantnf 9593 wemapwe 9597 ltweuz 13878 |
| Copyright terms: Public domain | W3C validator |