MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  we0 Structured version   Visualization version   GIF version

Theorem we0 5584
Description: Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
we0 𝑅 We ∅

Proof of Theorem we0
StepHypRef Expression
1 fr0 5568 . 2 𝑅 Fr ∅
2 so0 5539 . 2 𝑅 Or ∅
3 df-we 5546 . 2 (𝑅 We ∅ ↔ (𝑅 Fr ∅ ∧ 𝑅 Or ∅))
41, 2, 3mpbir2an 708 1 𝑅 We ∅
Colors of variables: wff setvar class
Syntax hints:  c0 4256   Or wor 5502   Fr wfr 5541   We wwe 5543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-po 5503  df-so 5504  df-fr 5544  df-we 5546
This theorem is referenced by:  ord0  6318  cantnf0  9433  cantnf  9451  wemapwe  9455  ltweuz  13681
  Copyright terms: Public domain W3C validator