MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  we0 Structured version   Visualization version   GIF version

Theorem we0 5695
Description: Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
we0 𝑅 We ∅

Proof of Theorem we0
StepHypRef Expression
1 fr0 5678 . 2 𝑅 Fr ∅
2 so0 5645 . 2 𝑅 Or ∅
3 df-we 5654 . 2 (𝑅 We ∅ ↔ (𝑅 Fr ∅ ∧ 𝑅 Or ∅))
41, 2, 3mpbir2an 710 1 𝑅 We ∅
Colors of variables: wff setvar class
Syntax hints:  c0 4352   Or wor 5606   Fr wfr 5649   We wwe 5651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-po 5607  df-so 5608  df-fr 5652  df-we 5654
This theorem is referenced by:  ord0  6448  cantnf0  9744  cantnf  9762  wemapwe  9766  ltweuz  14012
  Copyright terms: Public domain W3C validator