![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > we0 | Structured version Visualization version GIF version |
Description: Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.) |
Ref | Expression |
---|---|
we0 | ⊢ 𝑅 We ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fr0 5678 | . 2 ⊢ 𝑅 Fr ∅ | |
2 | so0 5645 | . 2 ⊢ 𝑅 Or ∅ | |
3 | df-we 5654 | . 2 ⊢ (𝑅 We ∅ ↔ (𝑅 Fr ∅ ∧ 𝑅 Or ∅)) | |
4 | 1, 2, 3 | mpbir2an 710 | 1 ⊢ 𝑅 We ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∅c0 4352 Or wor 5606 Fr wfr 5649 We wwe 5651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 |
This theorem is referenced by: ord0 6448 cantnf0 9744 cantnf 9762 wemapwe 9766 ltweuz 14012 |
Copyright terms: Public domain | W3C validator |