| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > we0 | Structured version Visualization version GIF version | ||
| Description: Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.) |
| Ref | Expression |
|---|---|
| we0 | ⊢ 𝑅 We ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fr0 5592 | . 2 ⊢ 𝑅 Fr ∅ | |
| 2 | so0 5560 | . 2 ⊢ 𝑅 Or ∅ | |
| 3 | df-we 5569 | . 2 ⊢ (𝑅 We ∅ ↔ (𝑅 Fr ∅ ∧ 𝑅 Or ∅)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝑅 We ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4281 Or wor 5521 Fr wfr 5564 We wwe 5566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 |
| This theorem is referenced by: ord0 6356 cantnf0 9560 cantnf 9578 wemapwe 9582 ltweuz 13860 |
| Copyright terms: Public domain | W3C validator |