Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > we0 | Structured version Visualization version GIF version |
Description: Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.) |
Ref | Expression |
---|---|
we0 | ⊢ 𝑅 We ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fr0 5559 | . 2 ⊢ 𝑅 Fr ∅ | |
2 | so0 5530 | . 2 ⊢ 𝑅 Or ∅ | |
3 | df-we 5537 | . 2 ⊢ (𝑅 We ∅ ↔ (𝑅 Fr ∅ ∧ 𝑅 Or ∅)) | |
4 | 1, 2, 3 | mpbir2an 707 | 1 ⊢ 𝑅 We ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∅c0 4253 Or wor 5493 Fr wfr 5532 We wwe 5534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 |
This theorem is referenced by: ord0 6303 cantnf0 9363 cantnf 9381 wemapwe 9385 ltweuz 13609 |
Copyright terms: Public domain | W3C validator |