| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > soeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) |
| Ref | Expression |
|---|---|
| soeq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poeq1 5569 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Po 𝐴 ↔ 𝑆 Po 𝐴)) | |
| 2 | breq 5126 | . . . . 5 ⊢ (𝑅 = 𝑆 → (𝑥𝑅𝑦 ↔ 𝑥𝑆𝑦)) | |
| 3 | biidd 262 | . . . . 5 ⊢ (𝑅 = 𝑆 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑦)) | |
| 4 | breq 5126 | . . . . 5 ⊢ (𝑅 = 𝑆 → (𝑦𝑅𝑥 ↔ 𝑦𝑆𝑥)) | |
| 5 | 2, 3, 4 | 3orbi123d 1437 | . . . 4 ⊢ (𝑅 = 𝑆 → ((𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ (𝑥𝑆𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑆𝑥))) |
| 6 | 5 | 2ralbidv 3209 | . . 3 ⊢ (𝑅 = 𝑆 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑆𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑆𝑥))) |
| 7 | 1, 6 | anbi12d 632 | . 2 ⊢ (𝑅 = 𝑆 → ((𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) ↔ (𝑆 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑆𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑆𝑥)))) |
| 8 | df-so 5567 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 9 | df-so 5567 | . 2 ⊢ (𝑆 Or 𝐴 ↔ (𝑆 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑆𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑆𝑥))) | |
| 10 | 7, 8, 9 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1085 = wceq 1540 ∀wral 3052 class class class wbr 5124 Po wpo 5564 Or wor 5565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-ex 1780 df-cleq 2728 df-clel 2810 df-ral 3053 df-br 5125 df-po 5566 df-so 5567 |
| This theorem is referenced by: soeq12d 5589 weeq1 5646 ltsopi 10907 cnso 16270 |
| Copyright terms: Public domain | W3C validator |