Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > soeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) |
Ref | Expression |
---|---|
soeq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poeq1 5506 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Po 𝐴 ↔ 𝑆 Po 𝐴)) | |
2 | breq 5076 | . . . . 5 ⊢ (𝑅 = 𝑆 → (𝑥𝑅𝑦 ↔ 𝑥𝑆𝑦)) | |
3 | biidd 261 | . . . . 5 ⊢ (𝑅 = 𝑆 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑦)) | |
4 | breq 5076 | . . . . 5 ⊢ (𝑅 = 𝑆 → (𝑦𝑅𝑥 ↔ 𝑦𝑆𝑥)) | |
5 | 2, 3, 4 | 3orbi123d 1434 | . . . 4 ⊢ (𝑅 = 𝑆 → ((𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ (𝑥𝑆𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑆𝑥))) |
6 | 5 | 2ralbidv 3129 | . . 3 ⊢ (𝑅 = 𝑆 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑆𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑆𝑥))) |
7 | 1, 6 | anbi12d 631 | . 2 ⊢ (𝑅 = 𝑆 → ((𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) ↔ (𝑆 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑆𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑆𝑥)))) |
8 | df-so 5504 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
9 | df-so 5504 | . 2 ⊢ (𝑆 Or 𝐴 ↔ (𝑆 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑆𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑆𝑥))) | |
10 | 7, 8, 9 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ w3o 1085 = wceq 1539 ∀wral 3064 class class class wbr 5074 Po wpo 5501 Or wor 5502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-ex 1783 df-cleq 2730 df-clel 2816 df-ral 3069 df-br 5075 df-po 5503 df-so 5504 |
This theorem is referenced by: weeq1 5577 ltsopi 10644 cnso 15956 opsrtoslem2 21263 soeq12d 40863 |
Copyright terms: Public domain | W3C validator |