![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > soeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) |
Ref | Expression |
---|---|
soeq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poeq1 5589 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Po 𝐴 ↔ 𝑆 Po 𝐴)) | |
2 | breq 5147 | . . . . 5 ⊢ (𝑅 = 𝑆 → (𝑥𝑅𝑦 ↔ 𝑥𝑆𝑦)) | |
3 | biidd 261 | . . . . 5 ⊢ (𝑅 = 𝑆 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑦)) | |
4 | breq 5147 | . . . . 5 ⊢ (𝑅 = 𝑆 → (𝑦𝑅𝑥 ↔ 𝑦𝑆𝑥)) | |
5 | 2, 3, 4 | 3orbi123d 1432 | . . . 4 ⊢ (𝑅 = 𝑆 → ((𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ (𝑥𝑆𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑆𝑥))) |
6 | 5 | 2ralbidv 3209 | . . 3 ⊢ (𝑅 = 𝑆 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑆𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑆𝑥))) |
7 | 1, 6 | anbi12d 630 | . 2 ⊢ (𝑅 = 𝑆 → ((𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) ↔ (𝑆 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑆𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑆𝑥)))) |
8 | df-so 5587 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
9 | df-so 5587 | . 2 ⊢ (𝑆 Or 𝐴 ↔ (𝑆 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑆𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑆𝑥))) | |
10 | 7, 8, 9 | 3bitr4g 313 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ w3o 1083 = wceq 1534 ∀wral 3051 class class class wbr 5145 Po wpo 5584 Or wor 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-ex 1775 df-cleq 2718 df-clel 2803 df-ral 3052 df-br 5146 df-po 5586 df-so 5587 |
This theorem is referenced by: weeq1 5662 ltsopi 10922 cnso 16244 opsrtoslem2 22065 soeq12d 42736 |
Copyright terms: Public domain | W3C validator |