Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > soeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) |
Ref | Expression |
---|---|
soeq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poeq1 5497 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Po 𝐴 ↔ 𝑆 Po 𝐴)) | |
2 | breq 5072 | . . . . 5 ⊢ (𝑅 = 𝑆 → (𝑥𝑅𝑦 ↔ 𝑥𝑆𝑦)) | |
3 | biidd 261 | . . . . 5 ⊢ (𝑅 = 𝑆 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑦)) | |
4 | breq 5072 | . . . . 5 ⊢ (𝑅 = 𝑆 → (𝑦𝑅𝑥 ↔ 𝑦𝑆𝑥)) | |
5 | 2, 3, 4 | 3orbi123d 1433 | . . . 4 ⊢ (𝑅 = 𝑆 → ((𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ (𝑥𝑆𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑆𝑥))) |
6 | 5 | 2ralbidv 3122 | . . 3 ⊢ (𝑅 = 𝑆 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑆𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑆𝑥))) |
7 | 1, 6 | anbi12d 630 | . 2 ⊢ (𝑅 = 𝑆 → ((𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) ↔ (𝑆 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑆𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑆𝑥)))) |
8 | df-so 5495 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
9 | df-so 5495 | . 2 ⊢ (𝑆 Or 𝐴 ↔ (𝑆 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑆𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑆𝑥))) | |
10 | 7, 8, 9 | 3bitr4g 313 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ w3o 1084 = wceq 1539 ∀wral 3063 class class class wbr 5070 Po wpo 5492 Or wor 5493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-ex 1784 df-cleq 2730 df-clel 2817 df-ral 3068 df-br 5071 df-po 5494 df-so 5495 |
This theorem is referenced by: weeq1 5568 ltsopi 10575 cnso 15884 opsrtoslem2 21173 soeq12d 40779 |
Copyright terms: Public domain | W3C validator |