Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pw2f1o2val2 Structured version   Visualization version   GIF version

Theorem pw2f1o2val2 43045
Description: Membership in a mapped set under the pw2f1o2 43043 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypothesis
Ref Expression
pw2f1o2.f 𝐹 = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
Assertion
Ref Expression
pw2f1o2val2 ((𝑋 ∈ (2om 𝐴) ∧ 𝑌𝐴) → (𝑌 ∈ (𝐹𝑋) ↔ (𝑋𝑌) = 1o))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pw2f1o2val2
StepHypRef Expression
1 pw2f1o2.f . . . . 5 𝐹 = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
21pw2f1o2val 43044 . . . 4 (𝑋 ∈ (2om 𝐴) → (𝐹𝑋) = (𝑋 “ {1o}))
32eleq2d 2827 . . 3 (𝑋 ∈ (2om 𝐴) → (𝑌 ∈ (𝐹𝑋) ↔ 𝑌 ∈ (𝑋 “ {1o})))
43adantr 480 . 2 ((𝑋 ∈ (2om 𝐴) ∧ 𝑌𝐴) → (𝑌 ∈ (𝐹𝑋) ↔ 𝑌 ∈ (𝑋 “ {1o})))
5 elmapi 8897 . . . 4 (𝑋 ∈ (2om 𝐴) → 𝑋:𝐴⟶2o)
6 ffn 6744 . . . 4 (𝑋:𝐴⟶2o𝑋 Fn 𝐴)
7 fniniseg 7087 . . . 4 (𝑋 Fn 𝐴 → (𝑌 ∈ (𝑋 “ {1o}) ↔ (𝑌𝐴 ∧ (𝑋𝑌) = 1o)))
85, 6, 73syl 18 . . 3 (𝑋 ∈ (2om 𝐴) → (𝑌 ∈ (𝑋 “ {1o}) ↔ (𝑌𝐴 ∧ (𝑋𝑌) = 1o)))
98baibd 539 . 2 ((𝑋 ∈ (2om 𝐴) ∧ 𝑌𝐴) → (𝑌 ∈ (𝑋 “ {1o}) ↔ (𝑋𝑌) = 1o))
104, 9bitrd 279 1 ((𝑋 ∈ (2om 𝐴) ∧ 𝑌𝐴) → (𝑌 ∈ (𝐹𝑋) ↔ (𝑋𝑌) = 1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  {csn 4634  cmpt 5234  ccnv 5692  cima 5696   Fn wfn 6564  wf 6565  cfv 6569  (class class class)co 7438  1oc1o 8507  2oc2o 8508  m cmap 8874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-map 8876
This theorem is referenced by:  wepwsolem  43047
  Copyright terms: Public domain W3C validator