| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pw2f1o2val2 | Structured version Visualization version GIF version | ||
| Description: Membership in a mapped set under the pw2f1o2 42994 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| Ref | Expression |
|---|---|
| pw2f1o2.f | ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) |
| Ref | Expression |
|---|---|
| pw2f1o2val2 | ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋‘𝑌) = 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2f1o2.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) | |
| 2 | 1 | pw2f1o2val 42995 | . . . 4 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝐹‘𝑋) = (◡𝑋 “ {1o})) |
| 3 | 2 | eleq2d 2819 | . . 3 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ 𝑌 ∈ (◡𝑋 “ {1o}))) |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ 𝑌 ∈ (◡𝑋 “ {1o}))) |
| 5 | elmapi 8858 | . . . 4 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → 𝑋:𝐴⟶2o) | |
| 6 | ffn 6703 | . . . 4 ⊢ (𝑋:𝐴⟶2o → 𝑋 Fn 𝐴) | |
| 7 | fniniseg 7047 | . . . 4 ⊢ (𝑋 Fn 𝐴 → (𝑌 ∈ (◡𝑋 “ {1o}) ↔ (𝑌 ∈ 𝐴 ∧ (𝑋‘𝑌) = 1o))) | |
| 8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝑌 ∈ (◡𝑋 “ {1o}) ↔ (𝑌 ∈ 𝐴 ∧ (𝑋‘𝑌) = 1o))) |
| 9 | 8 | baibd 539 | . 2 ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (◡𝑋 “ {1o}) ↔ (𝑋‘𝑌) = 1o)) |
| 10 | 4, 9 | bitrd 279 | 1 ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋‘𝑌) = 1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4599 ↦ cmpt 5199 ◡ccnv 5651 “ cima 5655 Fn wfn 6523 ⟶wf 6524 ‘cfv 6528 (class class class)co 7400 1oc1o 8468 2oc2o 8469 ↑m cmap 8835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-map 8837 |
| This theorem is referenced by: wepwsolem 42998 |
| Copyright terms: Public domain | W3C validator |