| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pw2f1o2val2 | Structured version Visualization version GIF version | ||
| Description: Membership in a mapped set under the pw2f1o2 43136 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| Ref | Expression |
|---|---|
| pw2f1o2.f | ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) |
| Ref | Expression |
|---|---|
| pw2f1o2val2 | ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋‘𝑌) = 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2f1o2.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) | |
| 2 | 1 | pw2f1o2val 43137 | . . . 4 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝐹‘𝑋) = (◡𝑋 “ {1o})) |
| 3 | 2 | eleq2d 2817 | . . 3 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ 𝑌 ∈ (◡𝑋 “ {1o}))) |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ 𝑌 ∈ (◡𝑋 “ {1o}))) |
| 5 | elmapi 8779 | . . . 4 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → 𝑋:𝐴⟶2o) | |
| 6 | ffn 6657 | . . . 4 ⊢ (𝑋:𝐴⟶2o → 𝑋 Fn 𝐴) | |
| 7 | fniniseg 6999 | . . . 4 ⊢ (𝑋 Fn 𝐴 → (𝑌 ∈ (◡𝑋 “ {1o}) ↔ (𝑌 ∈ 𝐴 ∧ (𝑋‘𝑌) = 1o))) | |
| 8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝑌 ∈ (◡𝑋 “ {1o}) ↔ (𝑌 ∈ 𝐴 ∧ (𝑋‘𝑌) = 1o))) |
| 9 | 8 | baibd 539 | . 2 ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (◡𝑋 “ {1o}) ↔ (𝑋‘𝑌) = 1o)) |
| 10 | 4, 9 | bitrd 279 | 1 ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋‘𝑌) = 1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4575 ↦ cmpt 5174 ◡ccnv 5618 “ cima 5622 Fn wfn 6482 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 1oc1o 8384 2oc2o 8385 ↑m cmap 8756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 |
| This theorem is referenced by: wepwsolem 43140 |
| Copyright terms: Public domain | W3C validator |