| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pw2f1o2val2 | Structured version Visualization version GIF version | ||
| Description: Membership in a mapped set under the pw2f1o2 43031 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| Ref | Expression |
|---|---|
| pw2f1o2.f | ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) |
| Ref | Expression |
|---|---|
| pw2f1o2val2 | ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋‘𝑌) = 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2f1o2.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) | |
| 2 | 1 | pw2f1o2val 43032 | . . . 4 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝐹‘𝑋) = (◡𝑋 “ {1o})) |
| 3 | 2 | eleq2d 2814 | . . 3 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ 𝑌 ∈ (◡𝑋 “ {1o}))) |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ 𝑌 ∈ (◡𝑋 “ {1o}))) |
| 5 | elmapi 8776 | . . . 4 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → 𝑋:𝐴⟶2o) | |
| 6 | ffn 6652 | . . . 4 ⊢ (𝑋:𝐴⟶2o → 𝑋 Fn 𝐴) | |
| 7 | fniniseg 6994 | . . . 4 ⊢ (𝑋 Fn 𝐴 → (𝑌 ∈ (◡𝑋 “ {1o}) ↔ (𝑌 ∈ 𝐴 ∧ (𝑋‘𝑌) = 1o))) | |
| 8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝑌 ∈ (◡𝑋 “ {1o}) ↔ (𝑌 ∈ 𝐴 ∧ (𝑋‘𝑌) = 1o))) |
| 9 | 8 | baibd 539 | . 2 ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (◡𝑋 “ {1o}) ↔ (𝑋‘𝑌) = 1o)) |
| 10 | 4, 9 | bitrd 279 | 1 ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋‘𝑌) = 1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4577 ↦ cmpt 5173 ◡ccnv 5618 “ cima 5622 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 1oc1o 8381 2oc2o 8382 ↑m cmap 8753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-map 8755 |
| This theorem is referenced by: wepwsolem 43035 |
| Copyright terms: Public domain | W3C validator |