![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pw2f1o2val2 | Structured version Visualization version GIF version |
Description: Membership in a mapped set under the pw2f1o2 38385 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
pw2f1o2.f | ⊢ 𝐹 = (𝑥 ∈ (2𝑜 ↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) |
Ref | Expression |
---|---|
pw2f1o2val2 | ⊢ ((𝑋 ∈ (2𝑜 ↑𝑚 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋‘𝑌) = 1𝑜)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw2f1o2.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (2𝑜 ↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) | |
2 | 1 | pw2f1o2val 38386 | . . . 4 ⊢ (𝑋 ∈ (2𝑜 ↑𝑚 𝐴) → (𝐹‘𝑋) = (◡𝑋 “ {1𝑜})) |
3 | 2 | eleq2d 2865 | . . 3 ⊢ (𝑋 ∈ (2𝑜 ↑𝑚 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ 𝑌 ∈ (◡𝑋 “ {1𝑜}))) |
4 | 3 | adantr 473 | . 2 ⊢ ((𝑋 ∈ (2𝑜 ↑𝑚 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ 𝑌 ∈ (◡𝑋 “ {1𝑜}))) |
5 | elmapi 8118 | . . . 4 ⊢ (𝑋 ∈ (2𝑜 ↑𝑚 𝐴) → 𝑋:𝐴⟶2𝑜) | |
6 | ffn 6257 | . . . 4 ⊢ (𝑋:𝐴⟶2𝑜 → 𝑋 Fn 𝐴) | |
7 | fniniseg 6565 | . . . 4 ⊢ (𝑋 Fn 𝐴 → (𝑌 ∈ (◡𝑋 “ {1𝑜}) ↔ (𝑌 ∈ 𝐴 ∧ (𝑋‘𝑌) = 1𝑜))) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝑋 ∈ (2𝑜 ↑𝑚 𝐴) → (𝑌 ∈ (◡𝑋 “ {1𝑜}) ↔ (𝑌 ∈ 𝐴 ∧ (𝑋‘𝑌) = 1𝑜))) |
9 | 8 | baibd 536 | . 2 ⊢ ((𝑋 ∈ (2𝑜 ↑𝑚 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (◡𝑋 “ {1𝑜}) ↔ (𝑋‘𝑌) = 1𝑜)) |
10 | 4, 9 | bitrd 271 | 1 ⊢ ((𝑋 ∈ (2𝑜 ↑𝑚 𝐴) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋‘𝑌) = 1𝑜)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {csn 4369 ↦ cmpt 4923 ◡ccnv 5312 “ cima 5316 Fn wfn 6097 ⟶wf 6098 ‘cfv 6102 (class class class)co 6879 1𝑜c1o 7793 2𝑜c2o 7794 ↑𝑚 cmap 8096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-1st 7402 df-2nd 7403 df-map 8098 |
This theorem is referenced by: wepwsolem 38392 |
Copyright terms: Public domain | W3C validator |