![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > soeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) |
Ref | Expression |
---|---|
soeq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐴 ↔ 𝑅 Or 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | soss 5617 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) | |
2 | soss 5617 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Or 𝐴 → 𝑅 Or 𝐵)) | |
3 | 1, 2 | anim12i 613 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝑅 Or 𝐵 → 𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴 → 𝑅 Or 𝐵))) |
4 | eqss 4011 | . . 3 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | dfbi2 474 | . . 3 ⊢ ((𝑅 Or 𝐵 ↔ 𝑅 Or 𝐴) ↔ ((𝑅 Or 𝐵 → 𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴 → 𝑅 Or 𝐵))) | |
6 | 3, 4, 5 | 3imtr4i 292 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐵 ↔ 𝑅 Or 𝐴)) |
7 | 6 | bicomd 223 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐴 ↔ 𝑅 Or 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ⊆ wss 3963 Or wor 5596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ral 3060 df-ss 3980 df-po 5597 df-so 5598 |
This theorem is referenced by: soeq12d 5620 weeq2 5677 wemapso2 9591 oemapso 9720 fin2i 10333 isfin2-2 10357 fin1a2lem10 10447 zorn2lem7 10540 zornn0g 10543 opsrtoslem2 22098 sltsolem1 27735 aomclem1 43043 |
Copyright terms: Public domain | W3C validator |