MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soeq2 Structured version   Visualization version   GIF version

Theorem soeq2 5619
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
soeq2 (𝐴 = 𝐵 → (𝑅 Or 𝐴𝑅 Or 𝐵))

Proof of Theorem soeq2
StepHypRef Expression
1 soss 5617 . . . 4 (𝐴𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
2 soss 5617 . . . 4 (𝐵𝐴 → (𝑅 Or 𝐴𝑅 Or 𝐵))
31, 2anim12i 613 . . 3 ((𝐴𝐵𝐵𝐴) → ((𝑅 Or 𝐵𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴𝑅 Or 𝐵)))
4 eqss 4011 . . 3 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 dfbi2 474 . . 3 ((𝑅 Or 𝐵𝑅 Or 𝐴) ↔ ((𝑅 Or 𝐵𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴𝑅 Or 𝐵)))
63, 4, 53imtr4i 292 . 2 (𝐴 = 𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
76bicomd 223 1 (𝐴 = 𝐵 → (𝑅 Or 𝐴𝑅 Or 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wss 3963   Or wor 5596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-cleq 2727  df-ral 3060  df-ss 3980  df-po 5597  df-so 5598
This theorem is referenced by:  soeq12d  5620  weeq2  5677  wemapso2  9591  oemapso  9720  fin2i  10333  isfin2-2  10357  fin1a2lem10  10447  zorn2lem7  10540  zornn0g  10543  opsrtoslem2  22098  sltsolem1  27735  aomclem1  43043
  Copyright terms: Public domain W3C validator