| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > soeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) |
| Ref | Expression |
|---|---|
| soeq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐴 ↔ 𝑅 Or 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soss 5581 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) | |
| 2 | soss 5581 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Or 𝐴 → 𝑅 Or 𝐵)) | |
| 3 | 1, 2 | anim12i 613 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝑅 Or 𝐵 → 𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴 → 𝑅 Or 𝐵))) |
| 4 | eqss 3974 | . . 3 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | dfbi2 474 | . . 3 ⊢ ((𝑅 Or 𝐵 ↔ 𝑅 Or 𝐴) ↔ ((𝑅 Or 𝐵 → 𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴 → 𝑅 Or 𝐵))) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐵 ↔ 𝑅 Or 𝐴)) |
| 7 | 6 | bicomd 223 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Or 𝐴 ↔ 𝑅 Or 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3926 Or wor 5560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ral 3052 df-ss 3943 df-po 5561 df-so 5562 |
| This theorem is referenced by: soeq12d 5584 weeq2 5642 wemapso2 9567 oemapso 9696 fin2i 10309 isfin2-2 10333 fin1a2lem10 10423 zorn2lem7 10516 zornn0g 10519 opsrtoslem2 22014 sltsolem1 27639 aomclem1 43078 |
| Copyright terms: Public domain | W3C validator |