MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soeq2 Structured version   Visualization version   GIF version

Theorem soeq2 5609
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
soeq2 (𝐴 = 𝐵 → (𝑅 Or 𝐴𝑅 Or 𝐵))

Proof of Theorem soeq2
StepHypRef Expression
1 soss 5607 . . . 4 (𝐴𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
2 soss 5607 . . . 4 (𝐵𝐴 → (𝑅 Or 𝐴𝑅 Or 𝐵))
31, 2anim12i 613 . . 3 ((𝐴𝐵𝐵𝐴) → ((𝑅 Or 𝐵𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴𝑅 Or 𝐵)))
4 eqss 3996 . . 3 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 dfbi2 475 . . 3 ((𝑅 Or 𝐵𝑅 Or 𝐴) ↔ ((𝑅 Or 𝐵𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴𝑅 Or 𝐵)))
63, 4, 53imtr4i 291 . 2 (𝐴 = 𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
76bicomd 222 1 (𝐴 = 𝐵 → (𝑅 Or 𝐴𝑅 Or 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wss 3947   Or wor 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-v 3476  df-in 3954  df-ss 3964  df-po 5587  df-so 5588
This theorem is referenced by:  weeq2  5664  wemapso2  9544  oemapso  9673  fin2i  10286  isfin2-2  10310  fin1a2lem10  10400  zorn2lem7  10493  zornn0g  10496  opsrtoslem2  21608  sltsolem1  27167  soeq12d  41765  aomclem1  41781
  Copyright terms: Public domain W3C validator