MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcimegf Structured version   Visualization version   GIF version

Theorem spcimegf 3575
Description: Existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgf.1 𝑥𝐴
spcimgf.2 𝑥𝜓
spcimegf.3 (𝑥 = 𝐴 → (𝜓𝜑))
Assertion
Ref Expression
spcimegf (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))

Proof of Theorem spcimegf
StepHypRef Expression
1 spcimgf.1 . . . 4 𝑥𝐴
2 spcimgf.2 . . . . 5 𝑥𝜓
32nfn 1853 . . . 4 𝑥 ¬ 𝜓
4 spcimegf.3 . . . . 5 (𝑥 = 𝐴 → (𝜓𝜑))
54con3d 152 . . . 4 (𝑥 = 𝐴 → (¬ 𝜑 → ¬ 𝜓))
61, 3, 5spcimgf 3574 . . 3 (𝐴𝑉 → (∀𝑥 ¬ 𝜑 → ¬ 𝜓))
76con2d 134 . 2 (𝐴𝑉 → (𝜓 → ¬ ∀𝑥 ¬ 𝜑))
8 df-ex 1775 . 2 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
97, 8imbitrrdi 251 1 (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1532   = wceq 1534  wex 1774  wnf 1778  wcel 2099  wnfc 2878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-v 3471
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator