MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcimegf Structured version   Visualization version   GIF version

Theorem spcimegf 3551
Description: Existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgf.1 𝑥𝐴
spcimgf.2 𝑥𝜓
spcimegf.3 (𝑥 = 𝐴 → (𝜓𝜑))
Assertion
Ref Expression
spcimegf (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))

Proof of Theorem spcimegf
StepHypRef Expression
1 spcimgf.1 . . . 4 𝑥𝐴
2 spcimgf.2 . . . . 5 𝑥𝜓
32nfn 1857 . . . 4 𝑥 ¬ 𝜓
4 spcimegf.3 . . . . 5 (𝑥 = 𝐴 → (𝜓𝜑))
54con3d 152 . . . 4 (𝑥 = 𝐴 → (¬ 𝜑 → ¬ 𝜓))
61, 3, 5spcimgf 3550 . . 3 (𝐴𝑉 → (∀𝑥 ¬ 𝜑 → ¬ 𝜓))
76con2d 134 . 2 (𝐴𝑉 → (𝜓 → ¬ ∀𝑥 ¬ 𝜑))
8 df-ex 1780 . 2 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
97, 8imbitrrdi 252 1 (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538   = wceq 1540  wex 1779  wnf 1783  wcel 2108  wnfc 2890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ex 1780  df-nf 1784  df-cleq 2729  df-clel 2816  df-nfc 2892
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator