MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcgf Structured version   Visualization version   GIF version

Theorem spcgf 3560
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.)
Hypotheses
Ref Expression
spcgf.1 𝑥𝐴
spcgf.2 𝑥𝜓
spcgf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcgf (𝐴𝑉 → (∀𝑥𝜑𝜓))

Proof of Theorem spcgf
StepHypRef Expression
1 spcgf.2 . . 3 𝑥𝜓
2 spcgf.1 . . 3 𝑥𝐴
31, 2spcgft 3518 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝑉 → (∀𝑥𝜑𝜓)))
4 spcgf.3 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4mpg 1797 1 (𝐴𝑉 → (∀𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wnf 1783  wcel 2109  wnfc 2877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-cleq 2722  df-clel 2804  df-nfc 2879
This theorem is referenced by:  spcegf  3561  rspc  3579  eusvnf  5349  gropd  28964  grstructd  28965
  Copyright terms: Public domain W3C validator