Step | Hyp | Ref
| Expression |
1 | | fvfundmfvn0 6794 |
. . 3
⊢ ((𝐹‘𝑎) ≠ ∅ → (𝑎 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑎}))) |
2 | 1 | ralimi 3086 |
. 2
⊢
(∀𝑎 ∈
𝐷 (𝐹‘𝑎) ≠ ∅ → ∀𝑎 ∈ 𝐷 (𝑎 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑎}))) |
3 | | r19.26 3094 |
. . 3
⊢
(∀𝑎 ∈
𝐷 (𝑎 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑎})) ↔ (∀𝑎 ∈ 𝐷 𝑎 ∈ dom 𝐹 ∧ ∀𝑎 ∈ 𝐷 Fun (𝐹 ↾ {𝑎}))) |
4 | | eleq1w 2821 |
. . . . . 6
⊢ (𝑎 = 𝑝 → (𝑎 ∈ dom 𝐹 ↔ 𝑝 ∈ dom 𝐹)) |
5 | 4 | rspccv 3549 |
. . . . 5
⊢
(∀𝑎 ∈
𝐷 𝑎 ∈ dom 𝐹 → (𝑝 ∈ 𝐷 → 𝑝 ∈ dom 𝐹)) |
6 | 5 | ssrdv 3923 |
. . . 4
⊢
(∀𝑎 ∈
𝐷 𝑎 ∈ dom 𝐹 → 𝐷 ⊆ dom 𝐹) |
7 | | funrel 6435 |
. . . . . . . 8
⊢ (Fun
(𝐹 ↾ {𝑎}) → Rel (𝐹 ↾ {𝑎})) |
8 | 7 | ralimi 3086 |
. . . . . . 7
⊢
(∀𝑎 ∈
𝐷 Fun (𝐹 ↾ {𝑎}) → ∀𝑎 ∈ 𝐷 Rel (𝐹 ↾ {𝑎})) |
9 | | reliun 5715 |
. . . . . . 7
⊢ (Rel
∪ 𝑎 ∈ 𝐷 (𝐹 ↾ {𝑎}) ↔ ∀𝑎 ∈ 𝐷 Rel (𝐹 ↾ {𝑎})) |
10 | 8, 9 | sylibr 233 |
. . . . . 6
⊢
(∀𝑎 ∈
𝐷 Fun (𝐹 ↾ {𝑎}) → Rel ∪ 𝑎 ∈ 𝐷 (𝐹 ↾ {𝑎})) |
11 | | sneq 4568 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑥 → {𝑎} = {𝑥}) |
12 | 11 | reseq2d 5880 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑥 → (𝐹 ↾ {𝑎}) = (𝐹 ↾ {𝑥})) |
13 | 12 | funeqd 6440 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → (Fun (𝐹 ↾ {𝑎}) ↔ Fun (𝐹 ↾ {𝑥}))) |
14 | 13 | rspcva 3550 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐷 ∧ ∀𝑎 ∈ 𝐷 Fun (𝐹 ↾ {𝑎})) → Fun (𝐹 ↾ {𝑥})) |
15 | | dffun5 6431 |
. . . . . . . . . . . 12
⊢ (Fun
(𝐹 ↾ {𝑥}) ↔ (Rel (𝐹 ↾ {𝑥}) ∧ ∀𝑤∃𝑦∀𝑧(〈𝑤, 𝑧〉 ∈ (𝐹 ↾ {𝑥}) → 𝑧 = 𝑦))) |
16 | | vex 3426 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑥 ∈ V |
17 | 16 | elsnres 5920 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝑤, 𝑧〉 ∈ (𝐹 ↾ {𝑥}) ↔ ∃𝑎(〈𝑤, 𝑧〉 = 〈𝑥, 𝑎〉 ∧ 〈𝑥, 𝑎〉 ∈ 𝐹)) |
18 | 17 | imbi1i 349 |
. . . . . . . . . . . . . . . 16
⊢
((〈𝑤, 𝑧〉 ∈ (𝐹 ↾ {𝑥}) → 𝑧 = 𝑦) ↔ (∃𝑎(〈𝑤, 𝑧〉 = 〈𝑥, 𝑎〉 ∧ 〈𝑥, 𝑎〉 ∈ 𝐹) → 𝑧 = 𝑦)) |
19 | 18 | albii 1823 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑧(〈𝑤, 𝑧〉 ∈ (𝐹 ↾ {𝑥}) → 𝑧 = 𝑦) ↔ ∀𝑧(∃𝑎(〈𝑤, 𝑧〉 = 〈𝑥, 𝑎〉 ∧ 〈𝑥, 𝑎〉 ∈ 𝐹) → 𝑧 = 𝑦)) |
20 | 19 | exbii 1851 |
. . . . . . . . . . . . . 14
⊢
(∃𝑦∀𝑧(〈𝑤, 𝑧〉 ∈ (𝐹 ↾ {𝑥}) → 𝑧 = 𝑦) ↔ ∃𝑦∀𝑧(∃𝑎(〈𝑤, 𝑧〉 = 〈𝑥, 𝑎〉 ∧ 〈𝑥, 𝑎〉 ∈ 𝐹) → 𝑧 = 𝑦)) |
21 | 20 | albii 1823 |
. . . . . . . . . . . . 13
⊢
(∀𝑤∃𝑦∀𝑧(〈𝑤, 𝑧〉 ∈ (𝐹 ↾ {𝑥}) → 𝑧 = 𝑦) ↔ ∀𝑤∃𝑦∀𝑧(∃𝑎(〈𝑤, 𝑧〉 = 〈𝑥, 𝑎〉 ∧ 〈𝑥, 𝑎〉 ∈ 𝐹) → 𝑧 = 𝑦)) |
22 | | equcom 2022 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = 𝑧 ↔ 𝑧 = 𝑎) |
23 | | opeq12 4803 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑤 = 𝑥 ∧ 𝑧 = 𝑎) → 〈𝑤, 𝑧〉 = 〈𝑥, 𝑎〉) |
24 | 23 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 𝑥 → (𝑧 = 𝑎 → 〈𝑤, 𝑧〉 = 〈𝑥, 𝑎〉)) |
25 | 22, 24 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑥 → (𝑎 = 𝑧 → 〈𝑤, 𝑧〉 = 〈𝑥, 𝑎〉)) |
26 | 25 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑤 = 𝑥 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → (𝑎 = 𝑧 → 〈𝑤, 𝑧〉 = 〈𝑥, 𝑎〉)) |
27 | 26 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑎 = 𝑧 ∧ (𝑤 = 𝑥 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹)) → 〈𝑤, 𝑧〉 = 〈𝑥, 𝑎〉) |
28 | | opeq2 4802 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 = 𝑎 → 〈𝑥, 𝑧〉 = 〈𝑥, 𝑎〉) |
29 | 28 | equcoms 2024 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 = 𝑧 → 〈𝑥, 𝑧〉 = 〈𝑥, 𝑎〉) |
30 | 29 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = 𝑧 → (〈𝑥, 𝑧〉 ∈ 𝐹 ↔ 〈𝑥, 𝑎〉 ∈ 𝐹)) |
31 | 30 | biimpcd 248 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(〈𝑥, 𝑧〉 ∈ 𝐹 → (𝑎 = 𝑧 → 〈𝑥, 𝑎〉 ∈ 𝐹)) |
32 | 31 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑤 = 𝑥 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → (𝑎 = 𝑧 → 〈𝑥, 𝑎〉 ∈ 𝐹)) |
33 | 32 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑎 = 𝑧 ∧ (𝑤 = 𝑥 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹)) → 〈𝑥, 𝑎〉 ∈ 𝐹) |
34 | 27, 33 | jca 511 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 = 𝑧 ∧ (𝑤 = 𝑥 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹)) → (〈𝑤, 𝑧〉 = 〈𝑥, 𝑎〉 ∧ 〈𝑥, 𝑎〉 ∈ 𝐹)) |
35 | 34 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑧 → ((𝑤 = 𝑥 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → (〈𝑤, 𝑧〉 = 〈𝑥, 𝑎〉 ∧ 〈𝑥, 𝑎〉 ∈ 𝐹))) |
36 | 35 | spimevw 1999 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 = 𝑥 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → ∃𝑎(〈𝑤, 𝑧〉 = 〈𝑥, 𝑎〉 ∧ 〈𝑥, 𝑎〉 ∈ 𝐹)) |
37 | 36 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑥 → (〈𝑥, 𝑧〉 ∈ 𝐹 → ∃𝑎(〈𝑤, 𝑧〉 = 〈𝑥, 𝑎〉 ∧ 〈𝑥, 𝑎〉 ∈ 𝐹))) |
38 | 37 | imim1d 82 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑥 → ((∃𝑎(〈𝑤, 𝑧〉 = 〈𝑥, 𝑎〉 ∧ 〈𝑥, 𝑎〉 ∈ 𝐹) → 𝑧 = 𝑦) → (〈𝑥, 𝑧〉 ∈ 𝐹 → 𝑧 = 𝑦))) |
39 | 38 | alimdv 1920 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑥 → (∀𝑧(∃𝑎(〈𝑤, 𝑧〉 = 〈𝑥, 𝑎〉 ∧ 〈𝑥, 𝑎〉 ∈ 𝐹) → 𝑧 = 𝑦) → ∀𝑧(〈𝑥, 𝑧〉 ∈ 𝐹 → 𝑧 = 𝑦))) |
40 | 39 | eximdv 1921 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑥 → (∃𝑦∀𝑧(∃𝑎(〈𝑤, 𝑧〉 = 〈𝑥, 𝑎〉 ∧ 〈𝑥, 𝑎〉 ∈ 𝐹) → 𝑧 = 𝑦) → ∃𝑦∀𝑧(〈𝑥, 𝑧〉 ∈ 𝐹 → 𝑧 = 𝑦))) |
41 | 40 | spimvw 2000 |
. . . . . . . . . . . . 13
⊢
(∀𝑤∃𝑦∀𝑧(∃𝑎(〈𝑤, 𝑧〉 = 〈𝑥, 𝑎〉 ∧ 〈𝑥, 𝑎〉 ∈ 𝐹) → 𝑧 = 𝑦) → ∃𝑦∀𝑧(〈𝑥, 𝑧〉 ∈ 𝐹 → 𝑧 = 𝑦)) |
42 | 21, 41 | sylbi 216 |
. . . . . . . . . . . 12
⊢
(∀𝑤∃𝑦∀𝑧(〈𝑤, 𝑧〉 ∈ (𝐹 ↾ {𝑥}) → 𝑧 = 𝑦) → ∃𝑦∀𝑧(〈𝑥, 𝑧〉 ∈ 𝐹 → 𝑧 = 𝑦)) |
43 | 15, 42 | simplbiim 504 |
. . . . . . . . . . 11
⊢ (Fun
(𝐹 ↾ {𝑥}) → ∃𝑦∀𝑧(〈𝑥, 𝑧〉 ∈ 𝐹 → 𝑧 = 𝑦)) |
44 | 14, 43 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐷 ∧ ∀𝑎 ∈ 𝐷 Fun (𝐹 ↾ {𝑎})) → ∃𝑦∀𝑧(〈𝑥, 𝑧〉 ∈ 𝐹 → 𝑧 = 𝑦)) |
45 | 44 | expcom 413 |
. . . . . . . . 9
⊢
(∀𝑎 ∈
𝐷 Fun (𝐹 ↾ {𝑎}) → (𝑥 ∈ 𝐷 → ∃𝑦∀𝑧(〈𝑥, 𝑧〉 ∈ 𝐹 → 𝑧 = 𝑦))) |
46 | | impexp 450 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝐷 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑧 = 𝑦) ↔ (𝑥 ∈ 𝐷 → (〈𝑥, 𝑧〉 ∈ 𝐹 → 𝑧 = 𝑦))) |
47 | 46 | albii 1823 |
. . . . . . . . . . 11
⊢
(∀𝑧((𝑥 ∈ 𝐷 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑧 = 𝑦) ↔ ∀𝑧(𝑥 ∈ 𝐷 → (〈𝑥, 𝑧〉 ∈ 𝐹 → 𝑧 = 𝑦))) |
48 | 47 | exbii 1851 |
. . . . . . . . . 10
⊢
(∃𝑦∀𝑧((𝑥 ∈ 𝐷 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑧 = 𝑦) ↔ ∃𝑦∀𝑧(𝑥 ∈ 𝐷 → (〈𝑥, 𝑧〉 ∈ 𝐹 → 𝑧 = 𝑦))) |
49 | | 19.21v 1943 |
. . . . . . . . . . 11
⊢
(∀𝑧(𝑥 ∈ 𝐷 → (〈𝑥, 𝑧〉 ∈ 𝐹 → 𝑧 = 𝑦)) ↔ (𝑥 ∈ 𝐷 → ∀𝑧(〈𝑥, 𝑧〉 ∈ 𝐹 → 𝑧 = 𝑦))) |
50 | 49 | exbii 1851 |
. . . . . . . . . 10
⊢
(∃𝑦∀𝑧(𝑥 ∈ 𝐷 → (〈𝑥, 𝑧〉 ∈ 𝐹 → 𝑧 = 𝑦)) ↔ ∃𝑦(𝑥 ∈ 𝐷 → ∀𝑧(〈𝑥, 𝑧〉 ∈ 𝐹 → 𝑧 = 𝑦))) |
51 | | 19.37v 1996 |
. . . . . . . . . 10
⊢
(∃𝑦(𝑥 ∈ 𝐷 → ∀𝑧(〈𝑥, 𝑧〉 ∈ 𝐹 → 𝑧 = 𝑦)) ↔ (𝑥 ∈ 𝐷 → ∃𝑦∀𝑧(〈𝑥, 𝑧〉 ∈ 𝐹 → 𝑧 = 𝑦))) |
52 | 48, 50, 51 | 3bitri 296 |
. . . . . . . . 9
⊢
(∃𝑦∀𝑧((𝑥 ∈ 𝐷 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑧 = 𝑦) ↔ (𝑥 ∈ 𝐷 → ∃𝑦∀𝑧(〈𝑥, 𝑧〉 ∈ 𝐹 → 𝑧 = 𝑦))) |
53 | 45, 52 | sylibr 233 |
. . . . . . . 8
⊢
(∀𝑎 ∈
𝐷 Fun (𝐹 ↾ {𝑎}) → ∃𝑦∀𝑧((𝑥 ∈ 𝐷 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑧 = 𝑦)) |
54 | 53 | alrimiv 1931 |
. . . . . . 7
⊢
(∀𝑎 ∈
𝐷 Fun (𝐹 ↾ {𝑎}) → ∀𝑥∃𝑦∀𝑧((𝑥 ∈ 𝐷 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑧 = 𝑦)) |
55 | | resiun2 5901 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ↾ ∪ 𝑎 ∈ 𝐷 {𝑎}) = ∪
𝑎 ∈ 𝐷 (𝐹 ↾ {𝑎}) |
56 | 55 | eqcomi 2747 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑎 ∈ 𝐷 (𝐹 ↾ {𝑎}) = (𝐹 ↾ ∪
𝑎 ∈ 𝐷 {𝑎}) |
57 | 56 | eleq2i 2830 |
. . . . . . . . . . . 12
⊢
(〈𝑥, 𝑧〉 ∈ ∪ 𝑎 ∈ 𝐷 (𝐹 ↾ {𝑎}) ↔ 〈𝑥, 𝑧〉 ∈ (𝐹 ↾ ∪
𝑎 ∈ 𝐷 {𝑎})) |
58 | | iunid 4986 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑎 ∈ 𝐷 {𝑎} = 𝐷 |
59 | 58 | reseq2i 5877 |
. . . . . . . . . . . . 13
⊢ (𝐹 ↾ ∪ 𝑎 ∈ 𝐷 {𝑎}) = (𝐹 ↾ 𝐷) |
60 | 59 | eleq2i 2830 |
. . . . . . . . . . . 12
⊢
(〈𝑥, 𝑧〉 ∈ (𝐹 ↾ ∪
𝑎 ∈ 𝐷 {𝑎}) ↔ 〈𝑥, 𝑧〉 ∈ (𝐹 ↾ 𝐷)) |
61 | | vex 3426 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ V |
62 | 61 | opelresi 5888 |
. . . . . . . . . . . 12
⊢
(〈𝑥, 𝑧〉 ∈ (𝐹 ↾ 𝐷) ↔ (𝑥 ∈ 𝐷 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹)) |
63 | 57, 60, 62 | 3bitri 296 |
. . . . . . . . . . 11
⊢
(〈𝑥, 𝑧〉 ∈ ∪ 𝑎 ∈ 𝐷 (𝐹 ↾ {𝑎}) ↔ (𝑥 ∈ 𝐷 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹)) |
64 | 63 | imbi1i 349 |
. . . . . . . . . 10
⊢
((〈𝑥, 𝑧〉 ∈ ∪ 𝑎 ∈ 𝐷 (𝐹 ↾ {𝑎}) → 𝑧 = 𝑦) ↔ ((𝑥 ∈ 𝐷 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑧 = 𝑦)) |
65 | 64 | albii 1823 |
. . . . . . . . 9
⊢
(∀𝑧(〈𝑥, 𝑧〉 ∈ ∪ 𝑎 ∈ 𝐷 (𝐹 ↾ {𝑎}) → 𝑧 = 𝑦) ↔ ∀𝑧((𝑥 ∈ 𝐷 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑧 = 𝑦)) |
66 | 65 | exbii 1851 |
. . . . . . . 8
⊢
(∃𝑦∀𝑧(〈𝑥, 𝑧〉 ∈ ∪ 𝑎 ∈ 𝐷 (𝐹 ↾ {𝑎}) → 𝑧 = 𝑦) ↔ ∃𝑦∀𝑧((𝑥 ∈ 𝐷 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑧 = 𝑦)) |
67 | 66 | albii 1823 |
. . . . . . 7
⊢
(∀𝑥∃𝑦∀𝑧(〈𝑥, 𝑧〉 ∈ ∪ 𝑎 ∈ 𝐷 (𝐹 ↾ {𝑎}) → 𝑧 = 𝑦) ↔ ∀𝑥∃𝑦∀𝑧((𝑥 ∈ 𝐷 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑧 = 𝑦)) |
68 | 54, 67 | sylibr 233 |
. . . . . 6
⊢
(∀𝑎 ∈
𝐷 Fun (𝐹 ↾ {𝑎}) → ∀𝑥∃𝑦∀𝑧(〈𝑥, 𝑧〉 ∈ ∪ 𝑎 ∈ 𝐷 (𝐹 ↾ {𝑎}) → 𝑧 = 𝑦)) |
69 | | dffun5 6431 |
. . . . . 6
⊢ (Fun
∪ 𝑎 ∈ 𝐷 (𝐹 ↾ {𝑎}) ↔ (Rel ∪ 𝑎 ∈ 𝐷 (𝐹 ↾ {𝑎}) ∧ ∀𝑥∃𝑦∀𝑧(〈𝑥, 𝑧〉 ∈ ∪ 𝑎 ∈ 𝐷 (𝐹 ↾ {𝑎}) → 𝑧 = 𝑦))) |
70 | 10, 68, 69 | sylanbrc 582 |
. . . . 5
⊢
(∀𝑎 ∈
𝐷 Fun (𝐹 ↾ {𝑎}) → Fun ∪ 𝑎 ∈ 𝐷 (𝐹 ↾ {𝑎})) |
71 | 58 | eqcomi 2747 |
. . . . . . . 8
⊢ 𝐷 = ∪ 𝑎 ∈ 𝐷 {𝑎} |
72 | 71 | reseq2i 5877 |
. . . . . . 7
⊢ (𝐹 ↾ 𝐷) = (𝐹 ↾ ∪
𝑎 ∈ 𝐷 {𝑎}) |
73 | 72 | funeqi 6439 |
. . . . . 6
⊢ (Fun
(𝐹 ↾ 𝐷) ↔ Fun (𝐹 ↾ ∪
𝑎 ∈ 𝐷 {𝑎})) |
74 | 55 | funeqi 6439 |
. . . . . 6
⊢ (Fun
(𝐹 ↾ ∪ 𝑎 ∈ 𝐷 {𝑎}) ↔ Fun ∪ 𝑎 ∈ 𝐷 (𝐹 ↾ {𝑎})) |
75 | 73, 74 | bitri 274 |
. . . . 5
⊢ (Fun
(𝐹 ↾ 𝐷) ↔ Fun ∪ 𝑎 ∈ 𝐷 (𝐹 ↾ {𝑎})) |
76 | 70, 75 | sylibr 233 |
. . . 4
⊢
(∀𝑎 ∈
𝐷 Fun (𝐹 ↾ {𝑎}) → Fun (𝐹 ↾ 𝐷)) |
77 | 6, 76 | anim12i 612 |
. . 3
⊢
((∀𝑎 ∈
𝐷 𝑎 ∈ dom 𝐹 ∧ ∀𝑎 ∈ 𝐷 Fun (𝐹 ↾ {𝑎})) → (𝐷 ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ 𝐷))) |
78 | 3, 77 | sylbi 216 |
. 2
⊢
(∀𝑎 ∈
𝐷 (𝑎 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑎})) → (𝐷 ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ 𝐷))) |
79 | 2, 78 | syl 17 |
1
⊢
(∀𝑎 ∈
𝐷 (𝐹‘𝑎) ≠ ∅ → (𝐷 ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ 𝐷))) |