Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rlimdmafv Structured version   Visualization version   GIF version

Theorem rlimdmafv 47151
Description: Two ways to express that a function has a limit, analogous to rlimdm 15493. (Contributed by Alexander van der Vekens, 27-Nov-2017.)
Hypotheses
Ref Expression
rlimdmafv.1 (𝜑𝐹:𝐴⟶ℂ)
rlimdmafv.2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
Assertion
Ref Expression
rlimdmafv (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟 '''𝐹)))

Proof of Theorem rlimdmafv
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldmg 5852 . . . 4 (𝐹 ∈ dom ⇝𝑟 → (𝐹 ∈ dom ⇝𝑟 ↔ ∃𝑥 𝐹𝑟 𝑥))
21ibi 267 . . 3 (𝐹 ∈ dom ⇝𝑟 → ∃𝑥 𝐹𝑟 𝑥)
3 simpr 484 . . . . . 6 ((𝜑𝐹𝑟 𝑥) → 𝐹𝑟 𝑥)
4 rlimrel 15435 . . . . . . . . . . . 12 Rel ⇝𝑟
54brrelex1i 5687 . . . . . . . . . . 11 (𝐹𝑟 𝑥𝐹 ∈ V)
65adantl 481 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → 𝐹 ∈ V)
7 vex 3448 . . . . . . . . . . 11 𝑥 ∈ V
87a1i 11 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → 𝑥 ∈ V)
9 breldmg 5863 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝑥 ∈ V ∧ 𝐹𝑟 𝑥) → 𝐹 ∈ dom ⇝𝑟 )
106, 8, 3, 9syl3anc 1373 . . . . . . . . 9 ((𝜑𝐹𝑟 𝑥) → 𝐹 ∈ dom ⇝𝑟 )
11 breq2 5106 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝐹𝑟 𝑦𝐹𝑟 𝑥))
1211biimprd 248 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝐹𝑟 𝑥𝐹𝑟 𝑦))
1312spimevw 1985 . . . . . . . . . . 11 (𝐹𝑟 𝑥 → ∃𝑦 𝐹𝑟 𝑦)
1413adantl 481 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → ∃𝑦 𝐹𝑟 𝑦)
15 rlimdmafv.1 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℂ)
1615adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐹𝑟 𝑥) → 𝐹:𝐴⟶ℂ)
1716adantr 480 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝐹:𝐴⟶ℂ)
18 rlimdmafv.2 . . . . . . . . . . . . . . 15 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
1918adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐹𝑟 𝑥) → sup(𝐴, ℝ*, < ) = +∞)
2019adantr 480 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → sup(𝐴, ℝ*, < ) = +∞)
21 simprl 770 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝐹𝑟 𝑦)
22 simprr 772 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝐹𝑟 𝑧)
2317, 20, 21, 22rlimuni 15492 . . . . . . . . . . . 12 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝑦 = 𝑧)
2423ex 412 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → ((𝐹𝑟 𝑦𝐹𝑟 𝑧) → 𝑦 = 𝑧))
2524alrimivv 1928 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → ∀𝑦𝑧((𝐹𝑟 𝑦𝐹𝑟 𝑧) → 𝑦 = 𝑧))
26 breq2 5106 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐹𝑟 𝑦𝐹𝑟 𝑧))
2726eu4 2608 . . . . . . . . . 10 (∃!𝑦 𝐹𝑟 𝑦 ↔ (∃𝑦 𝐹𝑟 𝑦 ∧ ∀𝑦𝑧((𝐹𝑟 𝑦𝐹𝑟 𝑧) → 𝑦 = 𝑧)))
2814, 25, 27sylanbrc 583 . . . . . . . . 9 ((𝜑𝐹𝑟 𝑥) → ∃!𝑦 𝐹𝑟 𝑦)
29 dfdfat2 47102 . . . . . . . . 9 ( ⇝𝑟 defAt 𝐹 ↔ (𝐹 ∈ dom ⇝𝑟 ∧ ∃!𝑦 𝐹𝑟 𝑦))
3010, 28, 29sylanbrc 583 . . . . . . . 8 ((𝜑𝐹𝑟 𝑥) → ⇝𝑟 defAt 𝐹)
31 afvfundmfveq 47112 . . . . . . . 8 ( ⇝𝑟 defAt 𝐹 → ( ⇝𝑟 '''𝐹) = ( ⇝𝑟𝐹))
3230, 31syl 17 . . . . . . 7 ((𝜑𝐹𝑟 𝑥) → ( ⇝𝑟 '''𝐹) = ( ⇝𝑟𝐹))
33 df-fv 6507 . . . . . . . 8 ( ⇝𝑟𝐹) = (℩𝑤𝐹𝑟 𝑤)
3415adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝐹:𝐴⟶ℂ)
3518adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → sup(𝐴, ℝ*, < ) = +∞)
36 simprr 772 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝐹𝑟 𝑤)
37 simprl 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝐹𝑟 𝑥)
3834, 35, 36, 37rlimuni 15492 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝑤 = 𝑥)
3938expr 456 . . . . . . . . . . . 12 ((𝜑𝐹𝑟 𝑥) → (𝐹𝑟 𝑤𝑤 = 𝑥))
40 breq2 5106 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → (𝐹𝑟 𝑤𝐹𝑟 𝑥))
413, 40syl5ibrcom 247 . . . . . . . . . . . 12 ((𝜑𝐹𝑟 𝑥) → (𝑤 = 𝑥𝐹𝑟 𝑤))
4239, 41impbid 212 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → (𝐹𝑟 𝑤𝑤 = 𝑥))
4342adantr 480 . . . . . . . . . 10 (((𝜑𝐹𝑟 𝑥) ∧ 𝑥 ∈ V) → (𝐹𝑟 𝑤𝑤 = 𝑥))
4443iota5 6482 . . . . . . . . 9 (((𝜑𝐹𝑟 𝑥) ∧ 𝑥 ∈ V) → (℩𝑤𝐹𝑟 𝑤) = 𝑥)
4544elvd 3450 . . . . . . . 8 ((𝜑𝐹𝑟 𝑥) → (℩𝑤𝐹𝑟 𝑤) = 𝑥)
4633, 45eqtrid 2776 . . . . . . 7 ((𝜑𝐹𝑟 𝑥) → ( ⇝𝑟𝐹) = 𝑥)
4732, 46eqtrd 2764 . . . . . 6 ((𝜑𝐹𝑟 𝑥) → ( ⇝𝑟 '''𝐹) = 𝑥)
483, 47breqtrrd 5130 . . . . 5 ((𝜑𝐹𝑟 𝑥) → 𝐹𝑟 ( ⇝𝑟 '''𝐹))
4948ex 412 . . . 4 (𝜑 → (𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟 '''𝐹)))
5049exlimdv 1933 . . 3 (𝜑 → (∃𝑥 𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟 '''𝐹)))
512, 50syl5 34 . 2 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟 '''𝐹)))
524releldmi 5901 . 2 (𝐹𝑟 ( ⇝𝑟 '''𝐹) → 𝐹 ∈ dom ⇝𝑟 )
5351, 52impbid1 225 1 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟 '''𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2561  Vcvv 3444   class class class wbr 5102  dom cdm 5631  cio 6450  wf 6495  cfv 6499  supcsup 9367  cc 11042  +∞cpnf 11181  *cxr 11183   < clt 11184  𝑟 crli 15427   defAt wdfat 47090  '''cafv 47091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-rlim 15431  df-aiota 47059  df-dfat 47093  df-afv 47094
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator