Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rlimdmafv Structured version   Visualization version   GIF version

Theorem rlimdmafv 42817
Description: Two ways to express that a function has a limit, analogous to rlimdm 14775. (Contributed by Alexander van der Vekens, 27-Nov-2017.)
Hypotheses
Ref Expression
rlimdmafv.1 (𝜑𝐹:𝐴⟶ℂ)
rlimdmafv.2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
Assertion
Ref Expression
rlimdmafv (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟 '''𝐹)))

Proof of Theorem rlimdmafv
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldmg 5621 . . . 4 (𝐹 ∈ dom ⇝𝑟 → (𝐹 ∈ dom ⇝𝑟 ↔ ∃𝑥 𝐹𝑟 𝑥))
21ibi 259 . . 3 (𝐹 ∈ dom ⇝𝑟 → ∃𝑥 𝐹𝑟 𝑥)
3 simpr 477 . . . . . 6 ((𝜑𝐹𝑟 𝑥) → 𝐹𝑟 𝑥)
4 rlimrel 14717 . . . . . . . . . . . 12 Rel ⇝𝑟
54brrelex1i 5462 . . . . . . . . . . 11 (𝐹𝑟 𝑥𝐹 ∈ V)
65adantl 474 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → 𝐹 ∈ V)
7 vex 3420 . . . . . . . . . . 11 𝑥 ∈ V
87a1i 11 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → 𝑥 ∈ V)
9 breldmg 5632 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝑥 ∈ V ∧ 𝐹𝑟 𝑥) → 𝐹 ∈ dom ⇝𝑟 )
106, 8, 3, 9syl3anc 1352 . . . . . . . . 9 ((𝜑𝐹𝑟 𝑥) → 𝐹 ∈ dom ⇝𝑟 )
11 breq2 4938 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝐹𝑟 𝑦𝐹𝑟 𝑥))
1211biimprd 240 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝐹𝑟 𝑥𝐹𝑟 𝑦))
1312spimev 2324 . . . . . . . . . . 11 (𝐹𝑟 𝑥 → ∃𝑦 𝐹𝑟 𝑦)
1413adantl 474 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → ∃𝑦 𝐹𝑟 𝑦)
15 rlimdmafv.1 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℂ)
1615adantr 473 . . . . . . . . . . . . . 14 ((𝜑𝐹𝑟 𝑥) → 𝐹:𝐴⟶ℂ)
1716adantr 473 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝐹:𝐴⟶ℂ)
18 rlimdmafv.2 . . . . . . . . . . . . . . 15 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
1918adantr 473 . . . . . . . . . . . . . 14 ((𝜑𝐹𝑟 𝑥) → sup(𝐴, ℝ*, < ) = +∞)
2019adantr 473 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → sup(𝐴, ℝ*, < ) = +∞)
21 simprl 759 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝐹𝑟 𝑦)
22 simprr 761 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝐹𝑟 𝑧)
2317, 20, 21, 22rlimuni 14774 . . . . . . . . . . . 12 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝑦 = 𝑧)
2423ex 405 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → ((𝐹𝑟 𝑦𝐹𝑟 𝑧) → 𝑦 = 𝑧))
2524alrimivv 1888 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → ∀𝑦𝑧((𝐹𝑟 𝑦𝐹𝑟 𝑧) → 𝑦 = 𝑧))
26 breq2 4938 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐹𝑟 𝑦𝐹𝑟 𝑧))
2726eu4 2650 . . . . . . . . . 10 (∃!𝑦 𝐹𝑟 𝑦 ↔ (∃𝑦 𝐹𝑟 𝑦 ∧ ∀𝑦𝑧((𝐹𝑟 𝑦𝐹𝑟 𝑧) → 𝑦 = 𝑧)))
2814, 25, 27sylanbrc 575 . . . . . . . . 9 ((𝜑𝐹𝑟 𝑥) → ∃!𝑦 𝐹𝑟 𝑦)
29 dfdfat2 42768 . . . . . . . . 9 ( ⇝𝑟 defAt 𝐹 ↔ (𝐹 ∈ dom ⇝𝑟 ∧ ∃!𝑦 𝐹𝑟 𝑦))
3010, 28, 29sylanbrc 575 . . . . . . . 8 ((𝜑𝐹𝑟 𝑥) → ⇝𝑟 defAt 𝐹)
31 afvfundmfveq 42778 . . . . . . . 8 ( ⇝𝑟 defAt 𝐹 → ( ⇝𝑟 '''𝐹) = ( ⇝𝑟𝐹))
3230, 31syl 17 . . . . . . 7 ((𝜑𝐹𝑟 𝑥) → ( ⇝𝑟 '''𝐹) = ( ⇝𝑟𝐹))
33 df-fv 6201 . . . . . . . 8 ( ⇝𝑟𝐹) = (℩𝑤𝐹𝑟 𝑤)
3415adantr 473 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝐹:𝐴⟶ℂ)
3518adantr 473 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → sup(𝐴, ℝ*, < ) = +∞)
36 simprr 761 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝐹𝑟 𝑤)
37 simprl 759 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝐹𝑟 𝑥)
3834, 35, 36, 37rlimuni 14774 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝑤 = 𝑥)
3938expr 449 . . . . . . . . . . . 12 ((𝜑𝐹𝑟 𝑥) → (𝐹𝑟 𝑤𝑤 = 𝑥))
40 breq2 4938 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → (𝐹𝑟 𝑤𝐹𝑟 𝑥))
413, 40syl5ibrcom 239 . . . . . . . . . . . 12 ((𝜑𝐹𝑟 𝑥) → (𝑤 = 𝑥𝐹𝑟 𝑤))
4239, 41impbid 204 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → (𝐹𝑟 𝑤𝑤 = 𝑥))
4342adantr 473 . . . . . . . . . 10 (((𝜑𝐹𝑟 𝑥) ∧ 𝑥 ∈ V) → (𝐹𝑟 𝑤𝑤 = 𝑥))
4443iota5 6177 . . . . . . . . 9 (((𝜑𝐹𝑟 𝑥) ∧ 𝑥 ∈ V) → (℩𝑤𝐹𝑟 𝑤) = 𝑥)
4544elvd 3423 . . . . . . . 8 ((𝜑𝐹𝑟 𝑥) → (℩𝑤𝐹𝑟 𝑤) = 𝑥)
4633, 45syl5eq 2828 . . . . . . 7 ((𝜑𝐹𝑟 𝑥) → ( ⇝𝑟𝐹) = 𝑥)
4732, 46eqtrd 2816 . . . . . 6 ((𝜑𝐹𝑟 𝑥) → ( ⇝𝑟 '''𝐹) = 𝑥)
483, 47breqtrrd 4962 . . . . 5 ((𝜑𝐹𝑟 𝑥) → 𝐹𝑟 ( ⇝𝑟 '''𝐹))
4948ex 405 . . . 4 (𝜑 → (𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟 '''𝐹)))
5049exlimdv 1893 . . 3 (𝜑 → (∃𝑥 𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟 '''𝐹)))
512, 50syl5 34 . 2 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟 '''𝐹)))
524releldmi 5666 . 2 (𝐹𝑟 ( ⇝𝑟 '''𝐹) → 𝐹 ∈ dom ⇝𝑟 )
5351, 52impbid1 217 1 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟 '''𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wal 1506   = wceq 1508  wex 1743  wcel 2051  ∃!weu 2588  Vcvv 3417   class class class wbr 4934  dom cdm 5411  cio 6155  wf 6189  cfv 6193  supcsup 8705  cc 10339  +∞cpnf 10477  *cxr 10479   < clt 10480  𝑟 crli 14709   defAt wdfat 42756  '''cafv 42757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-er 8095  df-pm 8215  df-en 8313  df-dom 8314  df-sdom 8315  df-sup 8707  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-2 11509  df-3 11510  df-n0 11714  df-z 11800  df-uz 12065  df-rp 12211  df-seq 13191  df-exp 13251  df-cj 14325  df-re 14326  df-im 14327  df-sqrt 14461  df-abs 14462  df-rlim 14713  df-aiota 42726  df-dfat 42759  df-afv 42760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator