Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rlimdmafv Structured version   Visualization version   GIF version

Theorem rlimdmafv 47182
Description: Two ways to express that a function has a limit, analogous to rlimdm 15524. (Contributed by Alexander van der Vekens, 27-Nov-2017.)
Hypotheses
Ref Expression
rlimdmafv.1 (𝜑𝐹:𝐴⟶ℂ)
rlimdmafv.2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
Assertion
Ref Expression
rlimdmafv (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟 '''𝐹)))

Proof of Theorem rlimdmafv
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldmg 5865 . . . 4 (𝐹 ∈ dom ⇝𝑟 → (𝐹 ∈ dom ⇝𝑟 ↔ ∃𝑥 𝐹𝑟 𝑥))
21ibi 267 . . 3 (𝐹 ∈ dom ⇝𝑟 → ∃𝑥 𝐹𝑟 𝑥)
3 simpr 484 . . . . . 6 ((𝜑𝐹𝑟 𝑥) → 𝐹𝑟 𝑥)
4 rlimrel 15466 . . . . . . . . . . . 12 Rel ⇝𝑟
54brrelex1i 5697 . . . . . . . . . . 11 (𝐹𝑟 𝑥𝐹 ∈ V)
65adantl 481 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → 𝐹 ∈ V)
7 vex 3454 . . . . . . . . . . 11 𝑥 ∈ V
87a1i 11 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → 𝑥 ∈ V)
9 breldmg 5876 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝑥 ∈ V ∧ 𝐹𝑟 𝑥) → 𝐹 ∈ dom ⇝𝑟 )
106, 8, 3, 9syl3anc 1373 . . . . . . . . 9 ((𝜑𝐹𝑟 𝑥) → 𝐹 ∈ dom ⇝𝑟 )
11 breq2 5114 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝐹𝑟 𝑦𝐹𝑟 𝑥))
1211biimprd 248 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝐹𝑟 𝑥𝐹𝑟 𝑦))
1312spimevw 1985 . . . . . . . . . . 11 (𝐹𝑟 𝑥 → ∃𝑦 𝐹𝑟 𝑦)
1413adantl 481 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → ∃𝑦 𝐹𝑟 𝑦)
15 rlimdmafv.1 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℂ)
1615adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐹𝑟 𝑥) → 𝐹:𝐴⟶ℂ)
1716adantr 480 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝐹:𝐴⟶ℂ)
18 rlimdmafv.2 . . . . . . . . . . . . . . 15 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
1918adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐹𝑟 𝑥) → sup(𝐴, ℝ*, < ) = +∞)
2019adantr 480 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → sup(𝐴, ℝ*, < ) = +∞)
21 simprl 770 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝐹𝑟 𝑦)
22 simprr 772 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝐹𝑟 𝑧)
2317, 20, 21, 22rlimuni 15523 . . . . . . . . . . . 12 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝑦 = 𝑧)
2423ex 412 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → ((𝐹𝑟 𝑦𝐹𝑟 𝑧) → 𝑦 = 𝑧))
2524alrimivv 1928 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → ∀𝑦𝑧((𝐹𝑟 𝑦𝐹𝑟 𝑧) → 𝑦 = 𝑧))
26 breq2 5114 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐹𝑟 𝑦𝐹𝑟 𝑧))
2726eu4 2609 . . . . . . . . . 10 (∃!𝑦 𝐹𝑟 𝑦 ↔ (∃𝑦 𝐹𝑟 𝑦 ∧ ∀𝑦𝑧((𝐹𝑟 𝑦𝐹𝑟 𝑧) → 𝑦 = 𝑧)))
2814, 25, 27sylanbrc 583 . . . . . . . . 9 ((𝜑𝐹𝑟 𝑥) → ∃!𝑦 𝐹𝑟 𝑦)
29 dfdfat2 47133 . . . . . . . . 9 ( ⇝𝑟 defAt 𝐹 ↔ (𝐹 ∈ dom ⇝𝑟 ∧ ∃!𝑦 𝐹𝑟 𝑦))
3010, 28, 29sylanbrc 583 . . . . . . . 8 ((𝜑𝐹𝑟 𝑥) → ⇝𝑟 defAt 𝐹)
31 afvfundmfveq 47143 . . . . . . . 8 ( ⇝𝑟 defAt 𝐹 → ( ⇝𝑟 '''𝐹) = ( ⇝𝑟𝐹))
3230, 31syl 17 . . . . . . 7 ((𝜑𝐹𝑟 𝑥) → ( ⇝𝑟 '''𝐹) = ( ⇝𝑟𝐹))
33 df-fv 6522 . . . . . . . 8 ( ⇝𝑟𝐹) = (℩𝑤𝐹𝑟 𝑤)
3415adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝐹:𝐴⟶ℂ)
3518adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → sup(𝐴, ℝ*, < ) = +∞)
36 simprr 772 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝐹𝑟 𝑤)
37 simprl 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝐹𝑟 𝑥)
3834, 35, 36, 37rlimuni 15523 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝑤 = 𝑥)
3938expr 456 . . . . . . . . . . . 12 ((𝜑𝐹𝑟 𝑥) → (𝐹𝑟 𝑤𝑤 = 𝑥))
40 breq2 5114 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → (𝐹𝑟 𝑤𝐹𝑟 𝑥))
413, 40syl5ibrcom 247 . . . . . . . . . . . 12 ((𝜑𝐹𝑟 𝑥) → (𝑤 = 𝑥𝐹𝑟 𝑤))
4239, 41impbid 212 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → (𝐹𝑟 𝑤𝑤 = 𝑥))
4342adantr 480 . . . . . . . . . 10 (((𝜑𝐹𝑟 𝑥) ∧ 𝑥 ∈ V) → (𝐹𝑟 𝑤𝑤 = 𝑥))
4443iota5 6497 . . . . . . . . 9 (((𝜑𝐹𝑟 𝑥) ∧ 𝑥 ∈ V) → (℩𝑤𝐹𝑟 𝑤) = 𝑥)
4544elvd 3456 . . . . . . . 8 ((𝜑𝐹𝑟 𝑥) → (℩𝑤𝐹𝑟 𝑤) = 𝑥)
4633, 45eqtrid 2777 . . . . . . 7 ((𝜑𝐹𝑟 𝑥) → ( ⇝𝑟𝐹) = 𝑥)
4732, 46eqtrd 2765 . . . . . 6 ((𝜑𝐹𝑟 𝑥) → ( ⇝𝑟 '''𝐹) = 𝑥)
483, 47breqtrrd 5138 . . . . 5 ((𝜑𝐹𝑟 𝑥) → 𝐹𝑟 ( ⇝𝑟 '''𝐹))
4948ex 412 . . . 4 (𝜑 → (𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟 '''𝐹)))
5049exlimdv 1933 . . 3 (𝜑 → (∃𝑥 𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟 '''𝐹)))
512, 50syl5 34 . 2 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟 '''𝐹)))
524releldmi 5915 . 2 (𝐹𝑟 ( ⇝𝑟 '''𝐹) → 𝐹 ∈ dom ⇝𝑟 )
5351, 52impbid1 225 1 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟 '''𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2562  Vcvv 3450   class class class wbr 5110  dom cdm 5641  cio 6465  wf 6510  cfv 6514  supcsup 9398  cc 11073  +∞cpnf 11212  *cxr 11214   < clt 11215  𝑟 crli 15458   defAt wdfat 47121  '''cafv 47122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-rlim 15462  df-aiota 47090  df-dfat 47124  df-afv 47125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator