Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rlimdmafv Structured version   Visualization version   GIF version

Theorem rlimdmafv 46826
Description: Two ways to express that a function has a limit, analogous to rlimdm 15548. (Contributed by Alexander van der Vekens, 27-Nov-2017.)
Hypotheses
Ref Expression
rlimdmafv.1 (𝜑𝐹:𝐴⟶ℂ)
rlimdmafv.2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
Assertion
Ref Expression
rlimdmafv (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟 '''𝐹)))

Proof of Theorem rlimdmafv
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldmg 5897 . . . 4 (𝐹 ∈ dom ⇝𝑟 → (𝐹 ∈ dom ⇝𝑟 ↔ ∃𝑥 𝐹𝑟 𝑥))
21ibi 266 . . 3 (𝐹 ∈ dom ⇝𝑟 → ∃𝑥 𝐹𝑟 𝑥)
3 simpr 483 . . . . . 6 ((𝜑𝐹𝑟 𝑥) → 𝐹𝑟 𝑥)
4 rlimrel 15490 . . . . . . . . . . . 12 Rel ⇝𝑟
54brrelex1i 5730 . . . . . . . . . . 11 (𝐹𝑟 𝑥𝐹 ∈ V)
65adantl 480 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → 𝐹 ∈ V)
7 vex 3466 . . . . . . . . . . 11 𝑥 ∈ V
87a1i 11 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → 𝑥 ∈ V)
9 breldmg 5908 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝑥 ∈ V ∧ 𝐹𝑟 𝑥) → 𝐹 ∈ dom ⇝𝑟 )
106, 8, 3, 9syl3anc 1368 . . . . . . . . 9 ((𝜑𝐹𝑟 𝑥) → 𝐹 ∈ dom ⇝𝑟 )
11 breq2 5149 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝐹𝑟 𝑦𝐹𝑟 𝑥))
1211biimprd 247 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝐹𝑟 𝑥𝐹𝑟 𝑦))
1312spimevw 1991 . . . . . . . . . . 11 (𝐹𝑟 𝑥 → ∃𝑦 𝐹𝑟 𝑦)
1413adantl 480 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → ∃𝑦 𝐹𝑟 𝑦)
15 rlimdmafv.1 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℂ)
1615adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝐹𝑟 𝑥) → 𝐹:𝐴⟶ℂ)
1716adantr 479 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝐹:𝐴⟶ℂ)
18 rlimdmafv.2 . . . . . . . . . . . . . . 15 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
1918adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝐹𝑟 𝑥) → sup(𝐴, ℝ*, < ) = +∞)
2019adantr 479 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → sup(𝐴, ℝ*, < ) = +∞)
21 simprl 769 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝐹𝑟 𝑦)
22 simprr 771 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝐹𝑟 𝑧)
2317, 20, 21, 22rlimuni 15547 . . . . . . . . . . . 12 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝑦 = 𝑧)
2423ex 411 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → ((𝐹𝑟 𝑦𝐹𝑟 𝑧) → 𝑦 = 𝑧))
2524alrimivv 1924 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → ∀𝑦𝑧((𝐹𝑟 𝑦𝐹𝑟 𝑧) → 𝑦 = 𝑧))
26 breq2 5149 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐹𝑟 𝑦𝐹𝑟 𝑧))
2726eu4 2604 . . . . . . . . . 10 (∃!𝑦 𝐹𝑟 𝑦 ↔ (∃𝑦 𝐹𝑟 𝑦 ∧ ∀𝑦𝑧((𝐹𝑟 𝑦𝐹𝑟 𝑧) → 𝑦 = 𝑧)))
2814, 25, 27sylanbrc 581 . . . . . . . . 9 ((𝜑𝐹𝑟 𝑥) → ∃!𝑦 𝐹𝑟 𝑦)
29 dfdfat2 46777 . . . . . . . . 9 ( ⇝𝑟 defAt 𝐹 ↔ (𝐹 ∈ dom ⇝𝑟 ∧ ∃!𝑦 𝐹𝑟 𝑦))
3010, 28, 29sylanbrc 581 . . . . . . . 8 ((𝜑𝐹𝑟 𝑥) → ⇝𝑟 defAt 𝐹)
31 afvfundmfveq 46787 . . . . . . . 8 ( ⇝𝑟 defAt 𝐹 → ( ⇝𝑟 '''𝐹) = ( ⇝𝑟𝐹))
3230, 31syl 17 . . . . . . 7 ((𝜑𝐹𝑟 𝑥) → ( ⇝𝑟 '''𝐹) = ( ⇝𝑟𝐹))
33 df-fv 6554 . . . . . . . 8 ( ⇝𝑟𝐹) = (℩𝑤𝐹𝑟 𝑤)
3415adantr 479 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝐹:𝐴⟶ℂ)
3518adantr 479 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → sup(𝐴, ℝ*, < ) = +∞)
36 simprr 771 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝐹𝑟 𝑤)
37 simprl 769 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝐹𝑟 𝑥)
3834, 35, 36, 37rlimuni 15547 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝑤 = 𝑥)
3938expr 455 . . . . . . . . . . . 12 ((𝜑𝐹𝑟 𝑥) → (𝐹𝑟 𝑤𝑤 = 𝑥))
40 breq2 5149 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → (𝐹𝑟 𝑤𝐹𝑟 𝑥))
413, 40syl5ibrcom 246 . . . . . . . . . . . 12 ((𝜑𝐹𝑟 𝑥) → (𝑤 = 𝑥𝐹𝑟 𝑤))
4239, 41impbid 211 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → (𝐹𝑟 𝑤𝑤 = 𝑥))
4342adantr 479 . . . . . . . . . 10 (((𝜑𝐹𝑟 𝑥) ∧ 𝑥 ∈ V) → (𝐹𝑟 𝑤𝑤 = 𝑥))
4443iota5 6529 . . . . . . . . 9 (((𝜑𝐹𝑟 𝑥) ∧ 𝑥 ∈ V) → (℩𝑤𝐹𝑟 𝑤) = 𝑥)
4544elvd 3469 . . . . . . . 8 ((𝜑𝐹𝑟 𝑥) → (℩𝑤𝐹𝑟 𝑤) = 𝑥)
4633, 45eqtrid 2778 . . . . . . 7 ((𝜑𝐹𝑟 𝑥) → ( ⇝𝑟𝐹) = 𝑥)
4732, 46eqtrd 2766 . . . . . 6 ((𝜑𝐹𝑟 𝑥) → ( ⇝𝑟 '''𝐹) = 𝑥)
483, 47breqtrrd 5173 . . . . 5 ((𝜑𝐹𝑟 𝑥) → 𝐹𝑟 ( ⇝𝑟 '''𝐹))
4948ex 411 . . . 4 (𝜑 → (𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟 '''𝐹)))
5049exlimdv 1929 . . 3 (𝜑 → (∃𝑥 𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟 '''𝐹)))
512, 50syl5 34 . 2 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟 '''𝐹)))
524releldmi 5946 . 2 (𝐹𝑟 ( ⇝𝑟 '''𝐹) → 𝐹 ∈ dom ⇝𝑟 )
5351, 52impbid1 224 1 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟 '''𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1532   = wceq 1534  wex 1774  wcel 2099  ∃!weu 2557  Vcvv 3462   class class class wbr 5145  dom cdm 5674  cio 6496  wf 6542  cfv 6546  supcsup 9476  cc 11147  +∞cpnf 11286  *cxr 11288   < clt 11289  𝑟 crli 15482   defAt wdfat 46765  '''cafv 46766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8726  df-pm 8850  df-en 8967  df-dom 8968  df-sdom 8969  df-sup 9478  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-n0 12519  df-z 12605  df-uz 12869  df-rp 13023  df-seq 14016  df-exp 14076  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-rlim 15486  df-aiota 46734  df-dfat 46768  df-afv 46769
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator