![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > refimssco | Structured version Visualization version GIF version |
Description: Reflexive relations are subsets of their self-composition. (Contributed by RP, 4-Aug-2020.) |
Ref | Expression |
---|---|
refimssco | ⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 → ◡𝐴 ⊆ ◡(𝐴 ∘ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5170 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝑥 → (𝑥𝐴𝑧 ↔ 𝑥𝐴𝑥)) | |
2 | breq1 5169 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝑥 → (𝑧𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
3 | 1, 2 | anbi12d 631 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑥 → ((𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦) ↔ (𝑥𝐴𝑥 ∧ 𝑥𝐴𝑦))) |
4 | 3 | biimprd 248 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → ((𝑥𝐴𝑥 ∧ 𝑥𝐴𝑦) → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
5 | 4 | spimevw 1994 | . . . . . . . 8 ⊢ ((𝑥𝐴𝑥 ∧ 𝑥𝐴𝑦) → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦)) |
6 | 5 | ex 412 | . . . . . . 7 ⊢ (𝑥𝐴𝑥 → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦) → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
8 | 7 | com12 32 | . . . . 5 ⊢ (𝑥𝐴𝑦 → ((𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦) → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
9 | 8 | a2i 14 | . . . 4 ⊢ ((𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦)) → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
10 | 19.37v 1991 | . . . 4 ⊢ (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦)) ↔ (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) | |
11 | 9, 10 | sylibr 234 | . . 3 ⊢ ((𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦)) → ∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
12 | 11 | 2alimi 1810 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦)) → ∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
13 | reflexg 43567 | . 2 ⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦))) | |
14 | cnvssco 43568 | . 2 ⊢ (◡𝐴 ⊆ ◡(𝐴 ∘ 𝐴) ↔ ∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) | |
15 | 12, 13, 14 | 3imtr4i 292 | 1 ⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 → ◡𝐴 ⊆ ◡(𝐴 ∘ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 ∃wex 1777 ∪ cun 3974 ⊆ wss 3976 class class class wbr 5166 I cid 5592 ◡ccnv 5699 dom cdm 5700 ran crn 5701 ↾ cres 5702 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |