![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > refimssco | Structured version Visualization version GIF version |
Description: Reflexive relations are subsets of their self-composition. (Contributed by RP, 4-Aug-2020.) |
Ref | Expression |
---|---|
refimssco | ⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 → ◡𝐴 ⊆ ◡(𝐴 ∘ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4847 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝑥 → (𝑥𝐴𝑧 ↔ 𝑥𝐴𝑥)) | |
2 | breq1 4846 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝑥 → (𝑧𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
3 | 1, 2 | anbi12d 625 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑥 → ((𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦) ↔ (𝑥𝐴𝑥 ∧ 𝑥𝐴𝑦))) |
4 | 3 | biimprd 240 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → ((𝑥𝐴𝑥 ∧ 𝑥𝐴𝑦) → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
5 | 4 | spimev 2399 | . . . . . . . 8 ⊢ ((𝑥𝐴𝑥 ∧ 𝑥𝐴𝑦) → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦)) |
6 | 5 | ex 402 | . . . . . . 7 ⊢ (𝑥𝐴𝑥 → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
7 | 6 | adantr 473 | . . . . . 6 ⊢ ((𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦) → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
8 | 7 | com12 32 | . . . . 5 ⊢ (𝑥𝐴𝑦 → ((𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦) → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
9 | 8 | a2i 14 | . . . 4 ⊢ ((𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦)) → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
10 | 19.37v 2092 | . . . 4 ⊢ (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦)) ↔ (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) | |
11 | 9, 10 | sylibr 226 | . . 3 ⊢ ((𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦)) → ∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
12 | 11 | 2alimi 1908 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦)) → ∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
13 | reflexg 38694 | . 2 ⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦))) | |
14 | cnvssco 38695 | . 2 ⊢ (◡𝐴 ⊆ ◡(𝐴 ∘ 𝐴) ↔ ∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) | |
15 | 12, 13, 14 | 3imtr4i 284 | 1 ⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 → ◡𝐴 ⊆ ◡(𝐴 ∘ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∀wal 1651 ∃wex 1875 ∪ cun 3767 ⊆ wss 3769 class class class wbr 4843 I cid 5219 ◡ccnv 5311 dom cdm 5312 ran crn 5313 ↾ cres 5314 ∘ ccom 5316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |