Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refimssco Structured version   Visualization version   GIF version

Theorem refimssco 42661
Description: Reflexive relations are subsets of their self-composition. (Contributed by RP, 4-Aug-2020.)
Assertion
Ref Expression
refimssco (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴𝐴(𝐴𝐴))

Proof of Theorem refimssco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5153 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑥𝐴𝑧𝑥𝐴𝑥))
2 breq1 5152 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑧𝐴𝑦𝑥𝐴𝑦))
31, 2anbi12d 630 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝑥𝐴𝑧𝑧𝐴𝑦) ↔ (𝑥𝐴𝑥𝑥𝐴𝑦)))
43biimprd 247 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑥𝐴𝑥𝑥𝐴𝑦) → (𝑥𝐴𝑧𝑧𝐴𝑦)))
54spimevw 1997 . . . . . . . 8 ((𝑥𝐴𝑥𝑥𝐴𝑦) → ∃𝑧(𝑥𝐴𝑧𝑧𝐴𝑦))
65ex 412 . . . . . . 7 (𝑥𝐴𝑥 → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧𝑧𝐴𝑦)))
76adantr 480 . . . . . 6 ((𝑥𝐴𝑥𝑦𝐴𝑦) → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧𝑧𝐴𝑦)))
87com12 32 . . . . 5 (𝑥𝐴𝑦 → ((𝑥𝐴𝑥𝑦𝐴𝑦) → ∃𝑧(𝑥𝐴𝑧𝑧𝐴𝑦)))
98a2i 14 . . . 4 ((𝑥𝐴𝑦 → (𝑥𝐴𝑥𝑦𝐴𝑦)) → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧𝑧𝐴𝑦)))
10 19.37v 1994 . . . 4 (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧𝑧𝐴𝑦)) ↔ (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧𝑧𝐴𝑦)))
119, 10sylibr 233 . . 3 ((𝑥𝐴𝑦 → (𝑥𝐴𝑥𝑦𝐴𝑦)) → ∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧𝑧𝐴𝑦)))
12112alimi 1813 . 2 (∀𝑥𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥𝑦𝐴𝑦)) → ∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧𝑧𝐴𝑦)))
13 reflexg 42659 . 2 (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 ↔ ∀𝑥𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥𝑦𝐴𝑦)))
14 cnvssco 42660 . 2 (𝐴(𝐴𝐴) ↔ ∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧𝑧𝐴𝑦)))
1512, 13, 143imtr4i 291 1 (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴𝐴(𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wex 1780  cun 3947  wss 3949   class class class wbr 5149   I cid 5574  ccnv 5676  dom cdm 5677  ran crn 5678  cres 5679  ccom 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-11 2153  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator