Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refimssco Structured version   Visualization version   GIF version

Theorem refimssco 43569
Description: Reflexive relations are subsets of their self-composition. (Contributed by RP, 4-Aug-2020.)
Assertion
Ref Expression
refimssco (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴𝐴(𝐴𝐴))

Proof of Theorem refimssco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5170 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑥𝐴𝑧𝑥𝐴𝑥))
2 breq1 5169 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑧𝐴𝑦𝑥𝐴𝑦))
31, 2anbi12d 631 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝑥𝐴𝑧𝑧𝐴𝑦) ↔ (𝑥𝐴𝑥𝑥𝐴𝑦)))
43biimprd 248 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑥𝐴𝑥𝑥𝐴𝑦) → (𝑥𝐴𝑧𝑧𝐴𝑦)))
54spimevw 1994 . . . . . . . 8 ((𝑥𝐴𝑥𝑥𝐴𝑦) → ∃𝑧(𝑥𝐴𝑧𝑧𝐴𝑦))
65ex 412 . . . . . . 7 (𝑥𝐴𝑥 → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧𝑧𝐴𝑦)))
76adantr 480 . . . . . 6 ((𝑥𝐴𝑥𝑦𝐴𝑦) → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧𝑧𝐴𝑦)))
87com12 32 . . . . 5 (𝑥𝐴𝑦 → ((𝑥𝐴𝑥𝑦𝐴𝑦) → ∃𝑧(𝑥𝐴𝑧𝑧𝐴𝑦)))
98a2i 14 . . . 4 ((𝑥𝐴𝑦 → (𝑥𝐴𝑥𝑦𝐴𝑦)) → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧𝑧𝐴𝑦)))
10 19.37v 1991 . . . 4 (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧𝑧𝐴𝑦)) ↔ (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧𝑧𝐴𝑦)))
119, 10sylibr 234 . . 3 ((𝑥𝐴𝑦 → (𝑥𝐴𝑥𝑦𝐴𝑦)) → ∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧𝑧𝐴𝑦)))
12112alimi 1810 . 2 (∀𝑥𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥𝑦𝐴𝑦)) → ∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧𝑧𝐴𝑦)))
13 reflexg 43567 . 2 (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 ↔ ∀𝑥𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥𝑦𝐴𝑦)))
14 cnvssco 43568 . 2 (𝐴(𝐴𝐴) ↔ ∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧𝑧𝐴𝑦)))
1512, 13, 143imtr4i 292 1 (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴𝐴(𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535  wex 1777  cun 3974  wss 3976   class class class wbr 5166   I cid 5592  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  ccom 5704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator