Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refimssco Structured version   Visualization version   GIF version

Theorem refimssco 41104
Description: Reflexive relations are subsets of their self-composition. (Contributed by RP, 4-Aug-2020.)
Assertion
Ref Expression
refimssco (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴𝐴(𝐴𝐴))

Proof of Theorem refimssco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5074 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑥𝐴𝑧𝑥𝐴𝑥))
2 breq1 5073 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑧𝐴𝑦𝑥𝐴𝑦))
31, 2anbi12d 630 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝑥𝐴𝑧𝑧𝐴𝑦) ↔ (𝑥𝐴𝑥𝑥𝐴𝑦)))
43biimprd 247 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑥𝐴𝑥𝑥𝐴𝑦) → (𝑥𝐴𝑧𝑧𝐴𝑦)))
54spimevw 1999 . . . . . . . 8 ((𝑥𝐴𝑥𝑥𝐴𝑦) → ∃𝑧(𝑥𝐴𝑧𝑧𝐴𝑦))
65ex 412 . . . . . . 7 (𝑥𝐴𝑥 → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧𝑧𝐴𝑦)))
76adantr 480 . . . . . 6 ((𝑥𝐴𝑥𝑦𝐴𝑦) → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧𝑧𝐴𝑦)))
87com12 32 . . . . 5 (𝑥𝐴𝑦 → ((𝑥𝐴𝑥𝑦𝐴𝑦) → ∃𝑧(𝑥𝐴𝑧𝑧𝐴𝑦)))
98a2i 14 . . . 4 ((𝑥𝐴𝑦 → (𝑥𝐴𝑥𝑦𝐴𝑦)) → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧𝑧𝐴𝑦)))
10 19.37v 1996 . . . 4 (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧𝑧𝐴𝑦)) ↔ (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧𝑧𝐴𝑦)))
119, 10sylibr 233 . . 3 ((𝑥𝐴𝑦 → (𝑥𝐴𝑥𝑦𝐴𝑦)) → ∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧𝑧𝐴𝑦)))
12112alimi 1816 . 2 (∀𝑥𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥𝑦𝐴𝑦)) → ∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧𝑧𝐴𝑦)))
13 reflexg 41102 . 2 (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 ↔ ∀𝑥𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥𝑦𝐴𝑦)))
14 cnvssco 41103 . 2 (𝐴(𝐴𝐴) ↔ ∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧𝑧𝐴𝑦)))
1512, 13, 143imtr4i 291 1 (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴𝐴(𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wex 1783  cun 3881  wss 3883   class class class wbr 5070   I cid 5479  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator