| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refimssco | Structured version Visualization version GIF version | ||
| Description: Reflexive relations are subsets of their self-composition. (Contributed by RP, 4-Aug-2020.) |
| Ref | Expression |
|---|---|
| refimssco | ⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 → ◡𝐴 ⊆ ◡(𝐴 ∘ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5114 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝑥 → (𝑥𝐴𝑧 ↔ 𝑥𝐴𝑥)) | |
| 2 | breq1 5113 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝑥 → (𝑧𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
| 3 | 1, 2 | anbi12d 632 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑥 → ((𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦) ↔ (𝑥𝐴𝑥 ∧ 𝑥𝐴𝑦))) |
| 4 | 3 | biimprd 248 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → ((𝑥𝐴𝑥 ∧ 𝑥𝐴𝑦) → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
| 5 | 4 | spimevw 1985 | . . . . . . . 8 ⊢ ((𝑥𝐴𝑥 ∧ 𝑥𝐴𝑦) → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦)) |
| 6 | 5 | ex 412 | . . . . . . 7 ⊢ (𝑥𝐴𝑥 → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
| 7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦) → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
| 8 | 7 | com12 32 | . . . . 5 ⊢ (𝑥𝐴𝑦 → ((𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦) → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
| 9 | 8 | a2i 14 | . . . 4 ⊢ ((𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦)) → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
| 10 | 19.37v 1997 | . . . 4 ⊢ (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦)) ↔ (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) | |
| 11 | 9, 10 | sylibr 234 | . . 3 ⊢ ((𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦)) → ∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
| 12 | 11 | 2alimi 1812 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦)) → ∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
| 13 | reflexg 43601 | . 2 ⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦))) | |
| 14 | cnvssco 43602 | . 2 ⊢ (◡𝐴 ⊆ ◡(𝐴 ∘ 𝐴) ↔ ∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) | |
| 15 | 12, 13, 14 | 3imtr4i 292 | 1 ⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 → ◡𝐴 ⊆ ◡(𝐴 ∘ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∪ cun 3915 ⊆ wss 3917 class class class wbr 5110 I cid 5535 ◡ccnv 5640 dom cdm 5641 ran crn 5642 ↾ cres 5643 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |