![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > refimssco | Structured version Visualization version GIF version |
Description: Reflexive relations are subsets of their self-composition. (Contributed by RP, 4-Aug-2020.) |
Ref | Expression |
---|---|
refimssco | ⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 → ◡𝐴 ⊆ ◡(𝐴 ∘ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5155 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝑥 → (𝑥𝐴𝑧 ↔ 𝑥𝐴𝑥)) | |
2 | breq1 5154 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝑥 → (𝑧𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
3 | 1, 2 | anbi12d 632 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑥 → ((𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦) ↔ (𝑥𝐴𝑥 ∧ 𝑥𝐴𝑦))) |
4 | 3 | biimprd 248 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → ((𝑥𝐴𝑥 ∧ 𝑥𝐴𝑦) → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
5 | 4 | spimevw 1994 | . . . . . . . 8 ⊢ ((𝑥𝐴𝑥 ∧ 𝑥𝐴𝑦) → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦)) |
6 | 5 | ex 412 | . . . . . . 7 ⊢ (𝑥𝐴𝑥 → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦) → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
8 | 7 | com12 32 | . . . . 5 ⊢ (𝑥𝐴𝑦 → ((𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦) → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
9 | 8 | a2i 14 | . . . 4 ⊢ ((𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦)) → (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
10 | 19.37v 1991 | . . . 4 ⊢ (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦)) ↔ (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) | |
11 | 9, 10 | sylibr 234 | . . 3 ⊢ ((𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦)) → ∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
12 | 11 | 2alimi 1811 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦)) → ∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) |
13 | reflexg 43611 | . 2 ⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦))) | |
14 | cnvssco 43612 | . 2 ⊢ (◡𝐴 ⊆ ◡(𝐴 ∘ 𝐴) ↔ ∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐴𝑧 ∧ 𝑧𝐴𝑦))) | |
15 | 12, 13, 14 | 3imtr4i 292 | 1 ⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 → ◡𝐴 ⊆ ◡(𝐴 ∘ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1778 ∪ cun 3964 ⊆ wss 3966 class class class wbr 5151 I cid 5586 ◡ccnv 5692 dom cdm 5693 ran crn 5694 ↾ cres 5695 ∘ ccom 5697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |