MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2abiOLD Structured version   Visualization version   GIF version

Theorem ss2abiOLD 4025
Description: Obsolete version of ss2abi 4024 as of 28-Jun-2024. (Contributed by NM, 31-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ss2abiOLD.1 (𝜑𝜓)
Assertion
Ref Expression
ss2abiOLD {𝑥𝜑} ⊆ {𝑥𝜓}

Proof of Theorem ss2abiOLD
StepHypRef Expression
1 ss2ab 4017 . 2 ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))
2 ss2abiOLD.1 . 2 (𝜑𝜓)
31, 2mpgbir 1802 1 {𝑥𝜑} ⊆ {𝑥𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  {cab 2710  wss 3911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-v 3446  df-in 3918  df-ss 3928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator