![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2abiOLD | Structured version Visualization version GIF version |
Description: Obsolete version of ss2abi 4059 as of 28-Jun-2024. (Contributed by NM, 31-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ss2abiOLD.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ss2abiOLD | ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2ab 4053 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 → 𝜓)) | |
2 | ss2abiOLD.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpgbir 1793 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 {cab 2702 ⊆ wss 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-10 2129 ax-11 2146 ax-12 2166 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-clel 2802 df-nfc 2877 df-ss 3961 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |