MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sselOLD Structured version   Visualization version   GIF version

Theorem sselOLD 3894
Description: Obsolete version of ssel 3893 as of 27-May-2024. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sselOLD (𝐴𝐵 → (𝐶𝐴𝐶𝐵))

Proof of Theorem sselOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfss2 3886 . . . . . 6 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
21biimpi 219 . . . . 5 (𝐴𝐵 → ∀𝑥(𝑥𝐴𝑥𝐵))
3219.21bi 2186 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
43anim2d 615 . . 3 (𝐴𝐵 → ((𝑥 = 𝐶𝑥𝐴) → (𝑥 = 𝐶𝑥𝐵)))
54eximdv 1925 . 2 (𝐴𝐵 → (∃𝑥(𝑥 = 𝐶𝑥𝐴) → ∃𝑥(𝑥 = 𝐶𝑥𝐵)))
6 dfclel 2817 . 2 (𝐶𝐴 ↔ ∃𝑥(𝑥 = 𝐶𝑥𝐴))
7 dfclel 2817 . 2 (𝐶𝐵 ↔ ∃𝑥(𝑥 = 𝐶𝑥𝐵))
85, 6, 73imtr4g 299 1 (𝐴𝐵 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1541   = wceq 1543  wex 1787  wcel 2110  wss 3866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-in 3873  df-ss 3883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator