MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sselOLD Structured version   Visualization version   GIF version

Theorem sselOLD 3911
Description: Obsolete version of ssel 3910 as of 27-May-2024. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sselOLD (𝐴𝐵 → (𝐶𝐴𝐶𝐵))

Proof of Theorem sselOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfss2 3903 . . . . . 6 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
21biimpi 215 . . . . 5 (𝐴𝐵 → ∀𝑥(𝑥𝐴𝑥𝐵))
3219.21bi 2184 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
43anim2d 611 . . 3 (𝐴𝐵 → ((𝑥 = 𝐶𝑥𝐴) → (𝑥 = 𝐶𝑥𝐵)))
54eximdv 1921 . 2 (𝐴𝐵 → (∃𝑥(𝑥 = 𝐶𝑥𝐴) → ∃𝑥(𝑥 = 𝐶𝑥𝐵)))
6 dfclel 2818 . 2 (𝐶𝐴 ↔ ∃𝑥(𝑥 = 𝐶𝑥𝐴))
7 dfclel 2818 . 2 (𝐶𝐵 ↔ ∃𝑥(𝑥 = 𝐶𝑥𝐵))
85, 6, 73imtr4g 295 1 (𝐴𝐵 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator